
MATLAB®

Programming Fundamentals

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB Programming Fundamentals
© COPYRIGHT 1984–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2004 First printing New for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)
March 2009 Online only Revised for Version 7.8 (Release 2009a)
September 2009 Online only Revised for Version 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 9.0 (Release 2016a)

v

Contents

Language

Syntax Basics
1

Create Variables . 1-2

Create Numeric Arrays . 1-3

Continue Long Statements on Multiple Lines 1-5

Call Functions . 1-6

Ignore Function Outputs . 1-7

Variable Names . 1-8
Valid Names . 1-8
Conflicts with Function Names 1-8

Case and Space Sensitivity . 1-10

Command vs. Function Syntax 1-12
Command and Function Syntaxes 1-12
Avoid Common Syntax Mistakes 1-13
How MATLAB Recognizes Command Syntax 1-14

Common Errors When Calling Functions 1-16
Conflicting Function and Variable Names 1-16
Undefined Functions or Variables 1-16

vi Contents

Program Components
2

Array vs. Matrix Operations . 2-2
Introduction . 2-2
Array Operations . 2-2
Matrix Operations . 2-4

Array Comparison with Relational Operators 2-7
Array Comparison . 2-7
Logic Statements . 2-9

Operator Precedence . 2-11
Precedence of AND and OR Operators 2-11
Overriding Default Precedence 2-12

Average Similar Data Points Using a Tolerance 2-13

Group Scattered Data Using a Tolerance 2-16

Special Values . 2-19

Conditional Statements . 2-21

Loop Control Statements . 2-23

Regular Expressions . 2-25
What Is a Regular Expression? 2-25
Steps for Building Expressions 2-27
Operators and Characters . 2-30

Lookahead Assertions in Regular Expressions 2-40
Lookahead Assertions . 2-40
Overlapping Matches . 2-40
Logical AND Conditions . 2-41

Tokens in Regular Expressions 2-43
Introduction . 2-43
Multiple Tokens . 2-44
Unmatched Tokens . 2-45
Tokens in Replacement Text . 2-46
Named Capture . 2-47

vii

Dynamic Regular Expressions . 2-49
Introduction . 2-49
Dynamic Match Expressions — (??expr) 2-50
Commands That Modify the Match Expression — (??

@cmd) . 2-51
Commands That Serve a Functional Purpose — (?

@cmd) . 2-52
Commands in Replacement Expressions — ${cmd} . . . 2-54

Comma-Separated Lists . 2-57
What Is a Comma-Separated List? 2-57
Generating a Comma-Separated List 2-57
Assigning Output from a Comma-Separated List 2-59
Assigning to a Comma-Separated List 2-60
How to Use the Comma-Separated Lists 2-62
Fast Fourier Transform Example 2-64

Alternatives to the eval Function 2-66
Why Avoid the eval Function? 2-66
Variables with Sequential Names 2-66
Files with Sequential Names . 2-67
Function Names in Variables 2-68
Field Names in Variables . 2-68
Error Handling . 2-69

Symbol Reference . 2-70
Asterisk — * . 2-70
At — @ . 2-71
Colon — : . 2-72
Comma — , . 2-73
Curly Braces — { } . 2-73
Dot — . 2-74
Dot-Dot — .. 2-74
Dot-Dot-Dot (Ellipsis) — ... 2-75
Dot-Parentheses — .() . 2-76
Exclamation Point — ! . 2-76
Parentheses — () . 2-76
Percent — % . 2-77
Percent-Brace — %{ %} . 2-77
Plus — + . 2-78
Semicolon — ; . 2-78
Single Quotes — ' ' . 2-79
Space Character . 2-79
Slash and Backslash — / \ . 2-80

viii Contents

Square Brackets — [] . 2-80
Tilde — ~ . 2-81

Classes (Data Types)

Overview of MATLAB Classes
3

Fundamental MATLAB Classes . 3-2

Numeric Classes
4

Integers . 4-2
Integer Classes . 4-2
Creating Integer Data . 4-3
Arithmetic Operations on Integer Classes 4-4
Largest and Smallest Values for Integer Classes 4-5
Integer Functions . 4-5

Floating-Point Numbers . 4-6
Double-Precision Floating Point 4-6
Single-Precision Floating Point 4-6
Creating Floating-Point Data . 4-7
Arithmetic Operations on Floating-Point Numbers 4-8
Largest and Smallest Values for Floating-Point Classes 4-9
Accuracy of Floating-Point Data 4-11
Avoiding Common Problems with Floating-Point

Arithmetic . 4-12
Floating-Point Functions . 4-14
References . 4-14

Complex Numbers . 4-16
Creating Complex Numbers . 4-16
Complex Number Functions . 4-17

ix

Infinity and NaN . 4-18
Infinity . 4-18
NaN . 4-18
Infinity and NaN Functions . 4-20

Identifying Numeric Classes . 4-21

Display Format for Numeric Values 4-22
Default Display . 4-22
Display Format Examples . 4-22
Setting Numeric Format in a Program 4-23

Function Summary . 4-25

The Logical Class
5

Find Array Elements That Meet a Condition 5-2
Apply a Single Condition . 5-2
Apply Multiple Conditions . 5-4
Replace Values that Meet a Condition 5-5

Determine if Arrays Are Logical 5-7
Identify Logical Matrix . 5-7
Test an Entire Array . 5-7
Test Each Array Element . 5-8
Summary Table . 5-9

Reduce Logical Arrays to Single Value 5-10

Truth Table for Logical Operations 5-13

Characters and Strings
6

Create Character Arrays . 6-2
Create Character Vector . 6-2

x Contents

Create Rectangular Character Array 6-3
Identify Characters . 6-4
Work with Space Characters . 6-5
Expand Character Arrays . 6-6

Cell Arrays of Character Vectors 6-7
Convert to Cell Array of Character Vectors 6-7
Functions for Cell Arrays of Character Vectors 6-8

Formatting Text . 6-10
Functions That Format Data into Text 6-10
The Format Specifier . 6-11
Input Value Arguments . 6-12
The Formatting Operator . 6-13
Constructing the Formatting Operator 6-14
Setting Field Width and Precision 6-19
Restrictions for Using Identifiers 6-21

Text Comparisons . 6-23
Compare Character Arrays for Equality 6-23
Comparing for Equality Using Operators 6-24
Categorize Characters Within Character Array 6-24

Searching and Replacing . 6-26

Convert from Numeric Values to Character Array . . . 6-28
Function Summary . 6-28
Convert Numbers to Character Codes 6-29
Represent Numbers as Text . 6-29
Convert to Specific Radix . 6-29

Convert from Character Arrays to Numeric Values . . 6-30
Function Summary . 6-30
Convert from Character Code 6-30
Convert Text that Represents Numeric Values 6-31
Convert from Specific Radix . 6-31

Function Summary . 6-33

xi

Dates and Time
7

Represent Dates and Times in MATLAB 7-2

Specify Time Zones . 7-6

Set Date and Time Display Format 7-8
Formats for Individual Date and Duration Arrays 7-8
datetime Display Format . 7-8
duration Display Format . 7-9
calendarDuration Display Format 7-10
Default datetime Format . 7-11

Generate Sequence of Dates and Time 7-13
Sequence of Datetime or Duration Values Between

Endpoints with Step Size . 7-13
Add Duration or Calendar Duration to Create Sequence of

Dates . 7-16
Specify Length and Endpoints of Date or Duration

Sequence . 7-17
Sequence of Datetime Values Using Calendar Rules . . 7-18

Share Code and Data Across Locales 7-22
Write Locale-Independent Date and Time Code 7-22
Write Dates in Other Languages 7-23
Read Dates in Other Languages 7-24

Extract or Assign Date and Time Components of
Datetime Array . 7-25

Combine Date and Time from Separate Variables 7-30

Date and Time Arithmetic . 7-32

Compare Dates and Time . 7-40

Plot Dates and Durations . 7-44

Core Functions Supporting Date and Time Arrays . . . 7-55

xii Contents

Convert Between Datetime Arrays, Numbers, and
Strings . 7-56

Overview . 7-56
Convert Between Datetime and Strings 7-57
Convert Between Datetime and Date Vectors 7-58
Convert Serial Date Numbers to Datetime 7-59
Convert Datetime Arrays to Numeric Values 7-59

Carryover in Date Vectors and Strings 7-61

Converting Date Vector Returns Unexpected Output . 7-62

Categorical Arrays
8

Create Categorical Arrays . 8-2

Convert Table Variables Containing Character Vectors
to Categorical . 8-6

Plot Categorical Data . 8-11

Compare Categorical Array Elements 8-19

Combine Categorical Arrays . 8-22

Combine Categorical Arrays Using Multiplication . . . 8-26

Access Data Using Categorical Arrays 8-29
Select Data By Category . 8-29
Common Ways to Access Data Using Categorical

Arrays . 8-29

Work with Protected Categorical Arrays 8-37

Advantages of Using Categorical Arrays 8-42
Natural Representation of Categorical Data 8-42
Mathematical Ordering for Character Vectors 8-42
Reduce Memory Requirements 8-42

xiii

Ordinal Categorical Arrays . 8-45
Order of Categories . 8-45
How to Create Ordinal Categorical Arrays 8-45
Working with Ordinal Categorical Arrays 8-48

Core Functions Supporting Categorical Arrays 8-49

Tables
9

Create and Work with Tables . 9-2

Add and Delete Table Rows . 9-15

Add and Delete Table Variables 9-19

Clean Messy and Missing Data in Tables 9-23

Modify Units, Descriptions and Table Variable Names 9-30

Access Data in a Table . 9-34
Ways to Index into a Table . 9-34
Create Table from Subset of Larger Table 9-35
Create Array from the Contents of Table 9-38

Calculations on Tables . 9-42

Split Data into Groups and Calculate Statistics 9-46

Split Table Data Variables and Apply Functions 9-50

Advantages of Using Tables . 9-55
Conveniently Store Mixed-Type Data in Single

Container . 9-55
Access Data Using Numeric or Named Indexing 9-58
Use Table Properties to Store Metadata 9-59

Grouping Variables To Split Data 9-62
Grouping Variables . 9-62
Group Definition . 9-62

xiv Contents

The Split-Apply-Combine Workflow 9-63
Missing Group Values . 9-64

Structures
10

Create a Structure Array . 10-2

Access Data in a Structure Array 10-6

Concatenate Structures . 10-10

Generate Field Names from Variables 10-12

Access Data in Nested Structures 10-13

Access Elements of a Nonscalar Struct Array 10-15

Ways to Organize Data in Structure Arrays 10-17
Plane Organization . 10-17
Element-by-Element Organization 10-19

Memory Requirements for a Structure Array 10-21

Cell Arrays
11

What Is a Cell Array? . 11-2

Create a Cell Array . 11-3

Access Data in a Cell Array . 11-5

Add Cells to a Cell Array . 11-8

Delete Data from a Cell Array . 11-9

xv

Combine Cell Arrays . 11-10

Pass Contents of Cell Arrays to Functions 11-11

Preallocate Memory for a Cell Array 11-16

Cell vs. Struct Arrays . 11-17

Multilevel Indexing to Access Parts of Cells 11-19

Function Handles
12

Create Function Handle . 12-2
What Is a Function Handle? . 12-2
Creating Function Handles . 12-2
Anonymous Functions . 12-4
Arrays of Function Handles . 12-4
Saving and Loading Function Handles 12-5

Pass Function to Another Function 12-6

Call Local Functions Using Function Handles 12-8

Compare Function Handles . 12-10
Compare Handles Constructed from Named Function 12-10
Compare Handles to Anonymous Functions 12-10
Compare Handles to Nested Functions 12-11
Call Local Functions Using Function Handles 12-12

Map Containers
13

Overview of the Map Data Structure 13-2

Description of the Map Class . 13-4
Properties of the Map Class . 13-4

xvi Contents

Methods of the Map Class . 13-5

Creating a Map Object . 13-6
Constructing an Empty Map Object 13-6
Constructing An Initialized Map Object 13-7
Combining Map Objects . 13-8

Examining the Contents of the Map 13-9

Reading and Writing Using a Key Index 13-10
Reading From the Map . 13-10
Adding Key/Value Pairs . 13-11
Building a Map with Concatenation 13-12

Modifying Keys and Values in the Map 13-15
Removing Keys and Values from the Map 13-15
Modifying Values . 13-16
Modifying Keys . 13-16
Modifying a Copy of the Map 13-17

Mapping to Different Value Types 13-18
Mapping to a Structure Array 13-18
Mapping to a Cell Array . 13-19

Combining Unlike Classes
14

Valid Combinations of Unlike Classes 14-2

Combining Unlike Integer Types 14-3
Overview . 14-3
Example of Combining Unlike Integer Sizes 14-3
Example of Combining Signed with Unsigned 14-4

Combining Integer and Noninteger Data 14-5

Combining Cell Arrays with Non-Cell Arrays 14-6

Empty Matrices . 14-7

xvii

Concatenation Examples . 14-8
Combining Single and Double Types 14-8
Combining Integer and Double Types 14-8
Combining Character and Double Types 14-9
Combining Logical and Double Types 14-9

Using Objects
15

Copying Objects . 15-2
Two Copy Behaviors . 15-2
Value Object Copy Behavior . 15-2
Handle Object Copy Behavior 15-3
Testing for Handle or Value Class 15-6

Defining Your Own Classes
16

Scripts and Functions

Scripts
17

Create Scripts . 17-2

Add Comments to Programs . 17-4

Run Code Sections . 17-6
Divide Your File into Code Sections 17-6
Evaluate Code Sections . 17-6
Navigate Among Code Sections in a File 17-8

xviii Contents

Example of Evaluating Code Sections 17-8
Change the Appearance of Code Sections 17-12
Use Code Sections with Control Statements and

Functions . 17-12

Scripts vs. Functions . 17-16

Live Scripts
18

Create Live Scripts . 18-2
Open New Live Script . 18-2
Run Code and Display Output 18-3
Format Live Scripts . 18-6

Run Sections in Live Scripts . 18-8
Divide Your File Into Sections 18-8
Evaluate Sections . 18-8
View Code Status . 18-9
Debugging . 18-10

Share Live Scripts . 18-11

Insert Equations into Live Scripts 18-13
Supported LaTeX Commands 18-15

What Is a Live Script? . 18-22
Live Script vs. Script . 18-24
Requirements . 18-25
Unsupported Features . 18-26
Save Live Script as Script . 18-26

Live Script File Format (.mlx) 18-27
Benefits of Live Script File Format 18-27
Source Control . 18-27

xix

Function Basics
19

Create Functions in Files . 19-2

Add Help for Your Program . 19-5

Run Functions in the Editor . 19-7

Base and Function Workspaces 19-9

Share Data Between Workspaces 19-10
Introduction . 19-10
Best Practice: Passing Arguments 19-10
Nested Functions . 19-11
Persistent Variables . 19-11
Global Variables . 19-12
Evaluating in Another Workspace 19-13

Check Variable Scope in Editor 19-15
Use Automatic Function and Variable Highlighting . . 19-15
Example of Using Automatic Function and Variable

Highlighting . 19-16

Types of Functions . 19-19
Local and Nested Functions in a File 19-19
Private Functions in a Subfolder 19-20
Anonymous Functions Without a File 19-20

Anonymous Functions . 19-23
What Are Anonymous Functions? 19-23
Variables in the Expression . 19-24
Multiple Anonymous Functions 19-25
Functions with No Inputs . 19-26
Functions with Multiple Inputs or Outputs 19-26
Arrays of Anonymous Functions 19-27

Local Functions . 19-29

Nested Functions . 19-31
What Are Nested Functions? 19-31
Requirements for Nested Functions 19-31

xx Contents

Sharing Variables Between Parent and Nested
Functions . 19-32

Using Handles to Store Function Parameters 19-33
Visibility of Nested Functions 19-36

Variables in Nested and Anonymous Functions 19-38

Private Functions . 19-40

Function Precedence Order . 19-42

Function Arguments
20

Find Number of Function Arguments 20-2

Support Variable Number of Inputs 20-4

Support Variable Number of Outputs 20-6

Validate Number of Function Arguments 20-8

Argument Checking in Nested Functions 20-11

Ignore Function Inputs . 20-13

Check Function Inputs with validateattributes 20-14

Parse Function Inputs . 20-17

Input Parser Validation Functions 20-21

xxi

Debugging MATLAB Code
21

Debug a MATLAB Program . 21-2
Set Breakpoint . 21-2
Run File . 21-3
Pause a Running File . 21-4
Find and Fix a Problem . 21-4
Step Through File . 21-7
End Debugging Session . 21-7

Set Breakpoints . 21-9
Standard Breakpoints . 21-10
Conditional Breakpoints . 21-11
Error Breakpoints . 21-12
Breakpoints in Anonymous Functions 21-15
Invalid Breakpoints . 21-16
Disable Breakpoints . 21-16
Clear Breakpoints . 21-17

Examine Values While Debugging 21-18
Select Workspace . 21-18
View Variable Value . 21-18

Presenting MATLAB Code
22

Options for Presenting Your Code 22-2

Publishing MATLAB Code . 22-4

Publishing Markup . 22-7
Markup Overview . 22-7
Sections and Section Titles . 22-10
Text Formatting . 22-11
Bulleted and Numbered Lists 22-12
Text and Code Blocks . 22-13
External File Content . 22-14
External Graphics . 22-15

xxii Contents

Image Snapshot . 22-17
LaTeX Equations . 22-18
Hyperlinks . 22-20
HTML Markup . 22-23
LaTeX Markup . 22-24

Output Preferences for Publishing 22-27
How to Edit Publishing Options 22-27
Specify Output File . 22-28
Run Code During Publishing 22-29
Manipulate Graphics in Publishing Output 22-31
Save a Publish Setting . 22-36
Manage a Publish Configuration 22-37

Create a MATLAB Notebook with Microsoft Word . . 22-41
Getting Started with MATLAB Notebooks 22-41
Creating and Evaluating Cells in a MATLAB

Notebook . 22-43
Formatting a MATLAB Notebook 22-48
Tips for Using MATLAB Notebooks 22-50
Configuring the MATLAB Notebook Software 22-51

Coding and Productivity Tips
23

Open and Save Files . 23-2
Open Existing Files . 23-2
Save Files . 23-3

Check Code for Errors and Warnings 23-6
Automatically Check Code in the Editor — Code

Analyzer . 23-6
Create a Code Analyzer Message Report 23-11
Adjust Code Analyzer Message Indicators and

Messages . 23-12
Understand Code Containing Suppressed Messages . 23-15
Understand the Limitations of Code Analysis 23-17
Enable MATLAB Compiler Deployment Messages . . . 23-20

xxiii

Improve Code Readability . 23-21
Indenting Code . 23-21
Right-Side Text Limit Indicator 23-23
Code Folding — Expand and Collapse Code

Constructs . 23-23

Find and Replace Text in Files 23-28
Find Any Text in the Current File 23-28
Find and Replace Functions or Variables in the Current

File . 23-28
Automatically Rename All Functions or Variables in a

File . 23-30
Find and Replace Any Text . 23-32
Find Text in Multiple File Names or Files 23-32
Function Alternative for Finding Text 23-32
Perform an Incremental Search in the Editor 23-32

Go To Location in File . 23-33
Navigate to a Specific Location 23-33
Set Bookmarks . 23-35
Navigate Backward and Forward in Files 23-36
Open a File or Variable from Within a File 23-37

Display Two Parts of a File Simultaneously 23-38

Add Reminders to Files . 23-41
Working with TODO/FIXME Reports 23-41

MATLAB Code Analyzer Report 23-44
Running the Code Analyzer Report 23-44
Changing Code Based on Code Analyzer Messages . . 23-46
Other Ways to Access Code Analyzer Messages 23-47

Programming Utilities
24

Identify Program Dependencies 24-2
Simple Display of Program File Dependencies 24-2
Detailed Display of Program File Dependencies 24-2
Dependencies Within a Folder 24-3

xxiv Contents

Protect Your Source Code . 24-8
Building a Content Obscured Format with P-Code . . . 24-8
Building a Standalone Executable 24-9

Create Hyperlinks that Run Functions 24-11
Run a Single Function . 24-12
Run Multiple Functions . 24-12
Provide Command Options . 24-13
Include Special Characters . 24-13

Create and Share Toolboxes . 24-14
Create Toolbox . 24-14
Share Toolbox . 24-17

Software Development

Error Handling
25

Exception Handling in a MATLAB Application 25-2
Overview . 25-2
Getting an Exception at the Command Line 25-2
Getting an Exception in Your Program Code 25-3
Generating a New Exception . 25-4

Capture Information About Exceptions 25-5
Overview . 25-5
The MException Class . 25-5
Properties of the MException Class 25-7
Methods of the MException Class 25-13

Throw an Exception . 25-15

Respond to an Exception . 25-17
Overview . 25-17
The try/catch Statement . 25-17
Suggestions on How to Handle an Exception 25-19

xxv

Clean Up When Functions Complete 25-22
Overview . 25-22
Examples of Cleaning Up a Program Upon Exit 25-23
Retrieving Information About the Cleanup Routine . . 25-25
Using onCleanup Versus try/catch 25-26
onCleanup in Scripts . 25-27

Issue Warnings and Errors . 25-28
Issue Warnings . 25-28
Throw Errors . 25-28
Add Run-Time Parameters to Your Warnings and

Errors . 25-29
Add Identifiers to Warnings and Errors 25-30

Suppress Warnings . 25-31
Turn Warnings On and Off . 25-32

Restore Warnings . 25-34
Disable and Restore a Particular Warning 25-34
Disable and Restore Multiple Warnings 25-35

Change How Warnings Display 25-37
Enable Verbose Warnings . 25-37
Display a Stack Trace on a Specific Warning 25-38

Use try/catch to Handle Errors 25-39

Program Scheduling
26

Use a MATLAB Timer Object . 26-2
Overview . 26-2
Example: Displaying a Message 26-3

Timer Callback Functions . 26-5
Associating Commands with Timer Object Events 26-5
Creating Callback Functions . 26-6
Specifying the Value of Callback Function Properties . 26-8

xxvi Contents

Handling Timer Queuing Conflicts 26-10
Drop Mode (Default) . 26-10
Error Mode . 26-12
Queue Mode . 26-13

Performance
27

Measure Performance of Your Program 27-2
Overview of Performance Timing Functions 27-2
Time Functions . 27-2
Time Portions of Code . 27-2
The cputime Function vs. tic/toc and timeit 27-3
Tips for Measuring Performance 27-3

Profile to Improve Performance 27-5
What Is Profiling? . 27-5
Profiling Process and Guidelines 27-5
Using the Profiler . 27-6
Profile Summary Report . 27-8
Profile Detail Report . 27-10

Use Profiler to Determine Code Coverage 27-13

Techniques to Improve Performance 27-15
Environment . 27-15
Code Structure . 27-15
Programming Practices for Performance 27-15
Tips on Specific MATLAB Functions 27-16

Preallocation . 27-18
Preallocating a Nondouble Matrix 27-18

Vectorization . 27-20
Using Vectorization . 27-20
Array Operations . 27-21
Logical Array Operations . 27-22
Matrix Operations . 27-23
Ordering, Setting, and Counting Operations 27-25
Functions Commonly Used in Vectorization 27-26

xxvii

Memory Usage
28

Strategies for Efficient Use of Memory 28-2
Ways to Reduce the Amount of Memory Required 28-2
Using Appropriate Data Storage 28-4
How to Avoid Fragmenting Memory 28-6
Reclaiming Used Memory . 28-8

Resolve “Out of Memory” Errors 28-9
General Suggestions for Reclaiming Memory 28-9
Increase System Swap Space 28-10
Set the Process Limit on Linux Systems 28-10
Disable Java VM on Linux Systems 28-10
Free System Resources on Windows Systems 28-11

How MATLAB Allocates Memory 28-12
Memory Allocation for Arrays 28-12
Data Structures and Memory 28-16

Custom Help and Documentation
29

Create Help for Classes . 29-2
Help Text from the doc Command 29-2
Custom Help Text . 29-3

Check Which Programs Have Help 29-9

Create Help Summary Files — Contents.m 29-12
What Is a Contents.m File? . 29-12
Create a Contents.m File . 29-13
Check an Existing Contents.m File 29-13

Display Custom Documentation 29-15
Overview . 29-15
Identify Your Documentation — info.xml 29-16
Create a Table of Contents — helptoc.xml 29-18
Build a Search Database . 29-20

xxviii Contents

Address Validation Errors for info.xml Files 29-21

Display Custom Examples . 29-23
How to Display Examples . 29-23
Elements of the demos.xml File 29-24

Source Control Interface
30

About MathWorks Source Control Integration 30-3
Classic and Distributed Source Control 30-3

Select or Disable Source Control System 30-6
Select Source Control System 30-6
Disable Source Control . 30-6

Create New Repository . 30-7

Review Changes in Source Control 30-9

Mark Files for Addition to Source Control 30-10

Resolve Source Control Conflicts 30-11
Examining and Resolving Conflicts 30-11
Resolve Conflicts . 30-11
Merge Text Files . 30-12
Extract Conflict Markers . 30-13

Commit Modified Files to Source Control 30-15

Revert Changes in Source Control 30-17
Revert Local Changes . 30-17
Revert a File to a Specified Revision 30-17

Set Up SVN Source Control . 30-18
SVN Source Control Options 30-18
Register Binary Files with SVN 30-19
Standard Repository Structure 30-22
Tag Versions of Files . 30-22
Enforce Locking Files Before Editing 30-22

xxix

Share a Subversion Repository 30-23

Check Out from SVN Repository 30-24
Retrieve Tagged Version of Repository 30-26

Update SVN File Status and Revision 30-28
Refresh Status of Files . 30-28
Update Revisions of Files . 30-28

Get SVN File Locks . 30-29

Set Up Git Source Control . 30-30
About Git Source Control . 30-30
Install Command-Line Git Client 30-31
Register Binary Files with Git 30-32

Clone from Git Repository . 30-34
Troubleshooting . 30-35

Update Git File Status and Revision 30-36
Refresh Status of Files . 30-36
Update Revisions of Files . 30-36

Branch and Merge with Git . 30-37
Create Branch . 30-37
Switch Branch . 30-39
Merge Branches . 30-39
Revert to Head . 30-40
Delete Branches . 30-40

Push and Fetch with Git . 30-41
Push . 30-41
Fetch and Merge . 30-42

Move, Rename, or Delete Files Under Source Control 30-44

MSSCCI Source Control Interface 30-45

Set Up MSSCCI Source Control 30-46
Create Projects in Source Control System 30-46
Specify Source Control System with MATLAB

Software . 30-48

xxx Contents

Register Source Control Project with MATLAB
Software . 30-49

Add Files to Source Control . 30-51

Check Files In and Out from MSSCCI Source Control 30-53
Check Files Into Source Control 30-53
Check Files Out of Source Control 30-54
Undoing the Checkout . 30-55

Additional MSSCCI Source Control Actions 30-56
Getting the Latest Version of Files for Viewing or

Compiling . 30-56
Removing Files from the Source Control System 30-57
Showing File History . 30-58
Comparing the Working Copy of a File to the Latest

Version in Source Control 30-59
Viewing Source Control Properties of a File 30-61
Starting the Source Control System 30-61

Access MSSCCI Source Control from Editors 30-63

Troubleshoot MSSCCI Source Control Problems 30-64
Source Control Error: Provider Not Present or Not

Installed Properly . 30-64
Restriction Against @ Character 30-65
Add to Source Control Is the Only Action Available . . 30-65
More Solutions for Source Control Problems 30-66

Unit Testing
31

Write Script-Based Unit Tests . 31-3

Additional Topics for Script-Based Tests 31-10
Test Suite Creation . 31-10
Test Selection . 31-11
Programmatic Access of Test Diagnostics 31-12
Test Runner Customization . 31-12

xxxi

Write Function-Based Unit Tests 31-14
Create Test Function . 31-14
Run the Tests . 31-17
Analyze the Results . 31-17

Write Simple Test Case Using Functions 31-18

Write Test Using Setup and Teardown Functions . . . 31-23

Additional Topics for Function-Based Tests 31-30
Fixtures for Setup and Teardown Code 31-30
Test Logging and Verbosity . 31-31
Test Suite Creation . 31-32
Test Selection . 31-32
Test Running . 31-33
Programmatic Access of Test Diagnostics 31-33
Test Runner Customization . 31-34

Author Class-Based Unit Tests in MATLAB 31-35
The Test Class Definition . 31-35
The Unit Tests . 31-35
Additional Features for Advanced Test Classes 31-37

Write Simple Test Case Using Classes 31-39

Write Setup and Teardown Code Using Classes 31-44
Test Fixtures . 31-44
Test Case with Method-Level Setup Code 31-44
Test Case with Class-Level Setup Code 31-45

Types of Qualifications . 31-48

Tag Unit Tests . 31-51
Tag Tests . 31-51
Select and Run Tests . 31-52

Write Tests Using Shared Fixtures 31-56

Create Basic Custom Fixture . 31-60

Create Advanced Custom Fixture 31-63

Create Basic Parameterized Test 31-70

xxxii Contents

Create Advanced Parameterized Test 31-76

Create Simple Test Suites . 31-84

Run Tests for Various Workflows 31-87
Set Up Example Tests . 31-87
Run All Tests in Class or Function 31-87
Run Single Test in Class or Function 31-88
Run Test Suites by Name . 31-88
Run Test Suites from Test Array 31-89
Run Tests with Customized Test Runner 31-89

Programmatically Access Test Diagnostics 31-91

Add Plugin to Test Runner . 31-92

Write Plugins to Extend TestRunner 31-95
Custom Plugins Overview . 31-95
Extending Test Level Plugin Methods 31-96
Extending Test Class Level Plugin Methods 31-96
Extending Test Suite Level Plugin Methods 31-97

Create Custom Plugin . 31-99

Write Plugin to Save Diagnostic Details 31-105

Plugin to Generate Custom Test Output Format . . . 31-110

Analyze Test Case Results . 31-114

Analyze Failed Test Results . 31-117

Dynamically Filtered Tests . 31-120
Test Methods . 31-120
Method Setup and Teardown Code 31-123
Class Setup and Teardown Code 31-125

Create Custom Constraint . 31-128

Create Custom Boolean Constraint 31-131

Create Custom Tolerance . 31-134

xxxiii

Overview of Performance Testing Framework 31-140
Determine Bounds of Measured Code 31-140
Types of Time Experiments 31-141
Write Performance Tests with Measurement

Boundaries . 31-142
Run Performance Tests . 31-142
Understand Invalid Test Results 31-143

Test Performance Using Scripts or Functions 31-144

Test Performance Using Classes 31-149

Language

1

Syntax Basics

• “Create Variables” on page 1-2
• “Create Numeric Arrays” on page 1-3
• “Continue Long Statements on Multiple Lines” on page 1-5
• “Call Functions” on page 1-6
• “Ignore Function Outputs” on page 1-7
• “Variable Names” on page 1-8
• “Case and Space Sensitivity” on page 1-10
• “Command vs. Function Syntax” on page 1-12
• “Common Errors When Calling Functions” on page 1-16

1 Syntax Basics

1-2

Create Variables

This example shows several ways to assign a value to a variable.

x = 5.71;

A = [1 2 3; 4 5 6; 7 8 9];

I = besseli(x,A);

You do not have to declare variables before assigning values.

If you do not end an assignment statement with a semicolon (;), MATLAB® displays the
result in the Command Window. For example,

x = 5.71

displays

x =

 5.7100

If you do not explicitly assign the output of a command to a variable, MATLAB generally
assigns the result to the reserved word ans. For example,

5.71

returns

ans =

 5.7100

The value of ans changes with every command that returns an output value that is not
assigned to a variable.

 Create Numeric Arrays

1-3

Create Numeric Arrays

This example shows how to create a numeric variable. In the MATLAB computing
environment, all variables are arrays, and by default, numeric variables are of type
double (that is, double-precision values). For example, create a scalar value.

A = 100;

Because scalar values are single element, 1-by-1 arrays,

whos A

returns

Name Size Bytes Class Attributes

A 1x1 8 double

To create a matrix (a two-dimensional, rectangular array of numbers), you can use the []
operator.

B = [12, 62, 93, -8, 22; 16, 2, 87, 43, 91; -4, 17, -72, 95, 6]

When using this operator, separate columns with a comma or space, and separate rows
with a semicolon. All rows must have the same number of elements. In this example, B is
a 3-by-5 matrix (that is, B has three rows and five columns).

B =

 12 62 93 -8 22

 16 2 87 43 91

 -4 17 -72 95 6

A matrix with only one row or column (that is, a 1-by-n or n-by-1 array) is a vector, such
as

C = [1, 2, 3]

or

D = [10; 20; 30]

For more information, see:

• “Multidimensional Arrays”

1 Syntax Basics

1-4

• “Matrix Indexing”

 Continue Long Statements on Multiple Lines

1-5

Continue Long Statements on Multiple Lines

This example shows how to continue a statement to the next line using ellipsis (...).

s = 1 - 1/2 + 1/3 - 1/4 + 1/5 ...

 - 1/6 + 1/7 - 1/8 + 1/9;

Build a long character string by concatenating shorter strings together:

mystring = ['Accelerating the pace of ' ...

 'engineering and science'];

The start and end quotation marks for a string must appear on the same line. For
example, this code returns an error, because each line contains only one quotation mark:

mystring = 'Accelerating the pace of ...

 engineering and science'

An ellipsis outside a quoted string is equivalent to a space. For example,

x = [1.23...

4.56];

is the same as

x = [1.23 4.56];

1 Syntax Basics

1-6

Call Functions

These examples show how to call a MATLAB function. To run the examples, you must
first create numeric arrays A and B, such as:

A = [1 3 5];

B = [10 6 4];

Enclose inputs to functions in parentheses:

max(A)

Separate multiple inputs with commas:

max(A,B)

Store output from a function by assigning it to a variable:

maxA = max(A)

Enclose multiple outputs in square brackets:

[maxA, location] = max(A)

Call a function that does not require any inputs, and does not return any outputs, by
typing only the function name:

clc

Enclose text string inputs in single quotation marks:

disp('hello world')

Related Examples
• “Ignore Function Outputs” on page 1-7

 Ignore Function Outputs

1-7

Ignore Function Outputs

This example shows how to request specific outputs from a function.

Request all three possible outputs from the fileparts function.

helpFile = which('help');

[helpPath,name,ext] = fileparts(helpFile);

The current workspace now contains three variables from fileparts: helpPath, name,
and ext. In this case, the variables are small. However, some functions return results
that use much more memory. If you do not need those variables, they waste space on
your system.

Request only the first output, ignoring the second and third.

helpPath = fileparts(helpFile);

For any function, you can request only the first outputs (where is less than or equal
to the number of possible outputs) and ignore any remaining outputs. If you request more
than one output, enclose the variable names in square brackets, [].

Ignore the first output using a tilde (~).

[~,name,ext] = fileparts(helpFile);

You can ignore any number of function outputs, in any position in the argument list.
Separate consecutive tildes with a comma, such as

[~,~,ext] = fileparts(helpFile);

1 Syntax Basics

1-8

Variable Names

In this section...

“Valid Names” on page 1-8
“Conflicts with Function Names” on page 1-8

Valid Names

A valid variable name starts with a letter, followed by letters, digits, or underscores.
MATLAB is case sensitive, so A and a are not the same variable. The maximum length of
a variable name is the value that the namelengthmax command returns.

You cannot define variables with the same names as MATLAB keywords, such as if or
end. For a complete list, run the iskeyword command.

Examples of valid names: Invalid names:
x6 6x

lastValue end

n_factorial n!

Conflicts with Function Names

Avoid creating variables with the same name as a function (such as i, j, mode, char,
size, and path). In general, variable names take precedence over function names. If you
create a variable that uses the name of a function, you sometimes get unexpected results.

Check whether a proposed name is already in use with the exist or which function.
exist returns 0 if there are no existing variables, functions, or other artifacts with the
proposed name. For example:

exist checkname

ans =

 0

If you inadvertently create a variable with a name conflict, remove the variable from
memory with the clear function.

 Variable Names

1-9

Another potential source of name conflicts occurs when you define a function that calls
load or eval (or similar functions) to add variables to the workspace. In some cases,
load or eval add variables that have the same names as functions. Unless these
variables are in the function workspace before the call to load or eval, the MATLAB
parser interprets the variable names as function names. For more information, see:

• “Loading Variables within a Function”
• “Alternatives to the eval Function” on page 2-66

See Also
clear | exist | iskeyword | isvarname | namelengthmax | which

1 Syntax Basics

1-10

Case and Space Sensitivity

MATLAB code is sensitive to casing, and insensitive to blank spaces except when
defining arrays.

Uppercase and Lowercase

In MATLAB code, use an exact match with regard to case for variables, files, and
functions. For example, if you have a variable, a, you cannot refer to that variable as
A. It is a best practice to use lowercase only when naming functions. This is especially
useful when you use both Microsoft® Windows® and UNIX®1 platforms because their file
systems behave differently with regard to case.

When you use the help function, the help displays some function names in all uppercase,
for example, PLOT, solely to distinguish the function name from the rest of the text. Some
functions for interfacing to Oracle® Java® software do use mixed case and the command-
line help and the documentation accurately reflect that.

Spaces

Blank spaces around operators such as -, :, and (), are optional, but they can improve
readability. For example, MATLAB interprets the following statements the same way.

y = sin (3 * pi) / 2

y=sin(3*pi)/2

However, blank spaces act as delimiters in horizontal concatenation. When defining row
vectors, you can use spaces and commas interchangeably to separate elements:

A = [1, 0 2, 3 3]

A =

 1 0 2 3 3

Because of this flexibility, check to ensure that MATLAB stores the correct values. For
example, the statement [1 sin (pi) 3] produces a much different result than [1
sin(pi) 3] does.

[1 sin (pi) 3]

Error using sin

1. UNIX is a registered trademark of The Open Group in the United States and other countries.

 Case and Space Sensitivity

1-11

Not enough input arguments.

[1 sin(pi) 3]

ans =

 1.0000 0.0000 3.0000

1 Syntax Basics

1-12

Command vs. Function Syntax

In this section...

“Command and Function Syntaxes” on page 1-12
“Avoid Common Syntax Mistakes” on page 1-13
“How MATLAB Recognizes Command Syntax” on page 1-14

Command and Function Syntaxes

In MATLAB, these statements are equivalent:

load durer.mat % Command syntax

load('durer.mat') % Function syntax

This equivalence is sometimes referred to as command-function duality.

All functions support this standard function syntax:

[output1, ..., outputM] = functionName(input1, ..., inputN)

If you do not require any outputs from the function, and all of the inputs are literal
strings (that is, text enclosed in single quotation marks), you can use this simpler
command syntax:

functionName input1 ... inputN

With command syntax, you separate inputs with spaces rather than commas, and do not
enclose input arguments in parentheses. Because all inputs are literal strings, single
quotation marks are optional, unless the input string contains spaces. For example:

disp 'hello world'

When a function input is a variable, you must use function syntax to pass the value
to the function. Command syntax always passes inputs as literal text and cannot pass
variable values. For example, create a variable and call the disp function with function
syntax to pass the value of the variable:

A = 123;

disp(A)

This code returns the expected result,

 Command vs. Function Syntax

1-13

123

You cannot use command syntax to pass the value of A, because this call

disp A

is equivalent to

disp('A')

and returns

A

Avoid Common Syntax Mistakes

Suppose that your workspace contains these variables:

filename = 'accounts.txt';

A = int8(1:8);

B = A;

The following table illustrates common misapplications of command syntax.

This Command... Is Equivalent to... Correct Syntax for Passing Value

open filename open('filename') open(filename)

isequal A B isequal('A','B') isequal(A,B)

strcmp class(A) int8 strcmp('class(A)','int8') strcmp(class(A),'int8')

cd matlabroot cd('matlabroot') cd(matlabroot)

isnumeric 500 isnumeric('500') isnumeric(500)

round 3.499 round('3.499'), which is
equivalent to round([51 46
52 57 57])

round(3.499)

Passing Variable Names

Some functions expect literal strings for variable names, such as save, load, clear, and
whos. For example,

whos -file durer.mat X

1 Syntax Basics

1-14

requests information about variable X in the example file durer.mat. This command is
equivalent to

whos('-file','durer.mat','X')

How MATLAB Recognizes Command Syntax

Consider the potentially ambiguous statement

ls ./d

This could be a call to the ls function with the folder ./d as its argument. It also could
request element-wise division on the array ls, using the variable d as the divisor.

If you issue such a statement at the command line, MATLAB can access the current
workspace and path to determine whether ls and d are functions or variables. However,
some components, such as the Code Analyzer and the Editor/Debugger, operate without
reference to the path or workspace. In those cases, MATLAB uses syntactic rules to
determine whether an expression is a function call using command syntax.

In general, when MATLAB recognizes an identifier (which might name a function or a
variable), it analyzes the characters that follow the identifier to determine the type of
expression, as follows:

• An equal sign (=) implies assignment. For example:

ls =d

• An open parenthesis after an identifier implies a function call. For example:

ls('./d')

• Space after an identifier, but not after a potential operator, implies a function call
using command syntax. For example:

ls ./d

• Spaces on both sides of a potential operator, or no spaces on either side of the
operator, imply an operation on variables. For example, these statements are
equivalent:

ls ./ d

ls./d

 Command vs. Function Syntax

1-15

Therefore, the potentially ambiguous statement ls ./d is a call to the ls function using
command syntax.

The best practice is to avoid defining variable names that conflict with common
functions, to prevent any ambiguity.

1 Syntax Basics

1-16

Common Errors When Calling Functions
In this section...

“Conflicting Function and Variable Names” on page 1-16
“Undefined Functions or Variables” on page 1-16

Conflicting Function and Variable Names

MATLAB throws an error if a variable and function have been given the same name and
there is insufficient information available for MATLAB to resolve the conflict. You may
see an error message something like the following:

Error: <functionName> was previously used as a variable,

 conflicting with its use here as the name of a function

 or command.

where <functionName> is the name of the function.

Certain uses of the eval and load functions can also result in a similar conflict between
variable and function names. For more information, see:

• “Conflicts with Function Names” on page 1-8
• “Loading Variables within a Function”
• “Alternatives to the eval Function” on page 2-66

Undefined Functions or Variables

You may encounter the following error message, or something similar, while working
with functions or variables in MATLAB:

Undefined function or variable 'x'.

These errors usually indicate that MATLAB cannot find a particular variable or
MATLAB program file in the current directory or on the search path. The root cause is
likely to be one of the following:

• The name of the function has been misspelled.
• The function name and name of the file containing the function are not the same.
• The toolbox to which the function belongs is not installed.
• The search path to the function has been changed.

 Common Errors When Calling Functions

1-17

• The function is part of a toolbox that you do not have a license for.

Follow the steps described in this section to resolve this situation.

Verify the Spelling of the Function Name

One of the most common errors is misspelling the function name. Especially with longer
function names or names containing similar characters (e.g., letter l and numeral one), it
is easy to make an error that is not easily detected.

If you misspell a MATLAB function, a suggested function name appears in the Command
Window. For example, this command fails because it includes an uppercase letter in the
function name:

accumArray

Undefined function or variable 'accumArray'.

Did you mean:

>> accumarray

Press Enter to execute the suggested command or Esc to dismiss it.

Make Sure the Function Name Matches the File Name

You establish the name for a function when you write its function definition line. This
name should always match the name of the file you save it to. For example, if you create
a function named curveplot,

function curveplot(xVal, yVal)

 - program code -

then you should name the file containing that function curveplot.m. If you create a
pcode file for the function, then name that file curveplot.p. In the case of conflicting
function and file names, the file name overrides the name given to the function. In this
example, if you save the curveplot function to a file named curveplotfunction.m,
then attempts to invoke the function using the function name will fail:

curveplot

Undefined function or variable 'curveplot'.

If you encounter this problem, change either the function name or file name so that
they are the same. If you have difficulty locating the file that uses this function, use the
MATLAB Find Files utility as follows:

1 Syntax Basics

1-18

1
On the Home tab, in the File section, click Find Files.

2 Under Find files named: enter *.m
3 Under Find files containing text: enter the function name.
4 Click the Find button

Make Sure the Toolbox Is Installed

If you are unable to use a built-in function from MATLAB or its toolboxes, make sure
that the function is installed.

If you do not know which toolbox supports the function you need, search for the function
documentation at http://www.mathworks.com/help. The toolbox name appears at
the top of the function reference page.

Once you know which toolbox the function belongs to, use the ver function to see which
toolboxes are installed on the system from which you run MATLAB. The ver function
displays a list of all currently installed MathWorks® products. If you can locate the

http://www.mathworks.com/help

 Common Errors When Calling Functions

1-19

toolbox you need in the output displayed by ver, then the toolbox is installed. For help
with installing MathWorks products, see the Installation Guide documentation.

If you do not see the toolbox and you believe that it is installed, then perhaps the
MATLAB path has been set incorrectly. Go on to the next section.

Verify the Path Used to Access the Function

This step resets the path to the default. Because MATLAB stores the toolbox information
in a cache file, you will need to first update this cache and then reset the path. To do this,

1
On the Home tab, in the Environment section, click Preferences.

The Preference dialog box appears.
2 Under the MATLAB > General node, click the Update Toolbox Path Cache

button.
3

On the Home tab, in the Environment section, click Set Path....

The Set Path dialog box opens.
4 Click Default.

A small dialog box opens warning that you will lose your current path settings if you
proceed. Click Yes if you decide to proceed.

(If you have added any custom paths to MATLAB, you will need to restore those later)

Run ver again to see if the toolbox is installed. If not, you may need to reinstall this
toolbox to use this function. See the Related Solution 1-1CBD3, "How do I install
additional toolboxes into my existing MATLAB" for more information about installing a
toolbox.

Once ver shows your toolbox, run the following command to see if you can find the
function:

which -all <functionname>

replacing <functionname> with the name of the function. You should be presented with
the path(s) of the function file. If you get a message indicating that the function name
was not found, you may need to reinstall that toolbox to make the function active.

http://www.mathworks.com/support/solutions/en/data/1-1CBD3/?solution=1-1CBD3
http://www.mathworks.com/support/solutions/en/data/1-1CBD3/?solution=1-1CBD3

1 Syntax Basics

1-20

Verify that Your License Covers The Toolbox

If you receive the error message “Has no license available”, there is a licensing
related issue preventing you from using the function. To find the error that is occurring,
you can use the following command:

license checkout <toolbox_license_key_name>

replacing <toolbox_license_key_name> with the proper key name for the toolbox
that contains your function. To find the license key name, look at the INCREMENT lines in
your license file. For information on how to find your license file see the related solution:
1-63ZIR6, "Where are the license files for MATLAB located?”

The license key names of all the toolboxes are located after each INCREMENT tag in the
license.dat file. For example:

INCREMENT MATLAB MLM 17 00-jan-0000 0 k

B454554BADECED4258 \HOSTID=123456 SN=123456

If your license.dat file has no INCREMENT lines, refer to your license administrator for
them. For example, to test the licensing for Symbolic Math Toolbox™, you would run the
following command:

license checkout Symbolic_Toolbox

A correct testing gives the result "ANS=1". An incorrect testing results in an error from
the license manager. You can either troubleshoot the error by looking up the license
manager error here:

http://www.mathworks.com/support/install.html

or you can contact the Installation Support Team with the error here:

http://www.mathworks.com/support/contact_us/index.html

When contacting support, provide your license number, your MATLAB version, the
function you are using, and the license manager error (if applicable).

http://www.mathworks.co.kr/support/solutions/en/data/1-63ZIR6/index.html?solution=1-63ZIR6

2

Program Components

• “Array vs. Matrix Operations” on page 2-2
• “Array Comparison with Relational Operators” on page 2-7
• “Operator Precedence” on page 2-11
• “Average Similar Data Points Using a Tolerance” on page 2-13
• “Group Scattered Data Using a Tolerance” on page 2-16
• “Special Values” on page 2-19
• “Conditional Statements” on page 2-21
• “Loop Control Statements” on page 2-23
• “Regular Expressions” on page 2-25
• “Lookahead Assertions in Regular Expressions” on page 2-40
• “Tokens in Regular Expressions” on page 2-43
• “Dynamic Regular Expressions” on page 2-49
• “Comma-Separated Lists” on page 2-57
• “Alternatives to the eval Function” on page 2-66
• “Symbol Reference” on page 2-70

2 Program Components

2-2

Array vs. Matrix Operations

In this section...

“Introduction” on page 2-2
“Array Operations” on page 2-2
“Matrix Operations” on page 2-4

Introduction

MATLAB has two different types of arithmetic operations: array operations and matrix
operations. You can use these arithmetic operations to perform numeric computations,
for example, adding two numbers, raising the elements of an array to a given power, or
multiplying two matrices.

Matrix operations follow the rules of linear algebra. By contrast, array operations
execute element by element operations and support multidimensional arrays. The period
character (.) distinguishes the array operations from the matrix operations. However,
since the matrix and array operations are the same for addition and subtraction, the
character pairs .+ and .- are unnecessary.

Array Operations

Array operations work on corresponding elements of arrays with equal dimensions. For
vectors, matrices, and multidimensional arrays, both operands must be the same size.
Each element in the first operand gets matched up with the element in the same location
in the second operand. If the inputs are different sizes, then MATLAB cannot match the
elements one-to-one.

As a simple example, you can add two vectors with the same size.

A = [1 1 1]

A =

 1 1 1

B = [1 2 3]

B =

 1 2 3

 Array vs. Matrix Operations

2-3

A+B

ans =

 2 3 4

If the vectors are not the same size then you get an error.
B = 1:4

B =

 1 2 3 4

A+B

Error using +

Matrix dimensions must agree.

If one operand is a scalar and the other is not, then MATLAB applies the scalar to every
element of the other operand. This property is known as scalar expansion because the
scalar expands into an array of the same size as the other input, then the operation
executes as it normally does with two arrays.

For example, the element-wise product of a scalar and a matrix uses scalar expansion.

A = [1 0 2;3 1 4]

A =

 1 0 2

 3 1 4

3.*A

ans =

 3 0 6

 9 3 12

The following table provides a summary of arithmetic array operators in MATLAB. For
function-specific information, click the link to the function reference page in the last
column.

Operator Purpose Description Reference
Page

+ Addition A+B adds A and B. plus

2 Program Components

2-4

Operator Purpose Description Reference
Page

+ Unary plus +A returns A. uplus

- Subtraction A-B subtracts B from A minus

- Unary minus -A negates the elements of A. uminus

.* Element-wise
multiplication

A.*B is the element-by-element product of
A and B.

times

.^ Element-wise
power

A.^B is the matrix with elements A(i,j)
to the B(i,j) power.

power

./ Right array
division

A./B is the matrix with elements
A(i,j)/B(i,j).

rdivide

.\ Left array
division

A.\B is the matrix with elements
B(i,j)/A(i,j).

ldivide

.' Array
transpose

A.' is the array transpose of A. For
complex matrices, this does not involve
conjugation.

transpose

Matrix Operations

Matrix operations follow the rules of linear algebra and are not compatible with
multidimensional arrays. The required size and shape of the inputs in relation to one
another depends on the operation. For nonscalar inputs, the matrix operators generally
calculate different answers than their array operator counterparts.

For example, if you use the matrix right division operator, /, to divide two matrices,
the matrices must have the same number of columns. But if you use the matrix
multiplication operator, *, to multiply two matrices, then the matrices must have a
common inner dimension. That is, the number of columns in the first input must be equal
to the number of rows in the second input. The matrix multiplication operator calculates
the product of two matrices with the formula,

C i j A i k B k j

k

n

(,) (,) (,).=

=

Â
1

To see this, you can calculate the product of two matrices.

 Array vs. Matrix Operations

2-5

A = [1 3;2 4]

A =

 1 3

 2 4

B = [3 0;1 5]

B =

 3 0

 1 5

A*B

ans =

 6 15

 10 20

The previous matrix product is not equal to the following element-wise product.

A.*B

ans =

 3 0

 2 20

The following table provides a summary of matrix arithmetic operators in MATLAB.
For function-specific information, click the link to the function reference page in the last
column.

Operator Purpose Description Reference
Page

* Matrix
multiplication

C = A*B is the linear algebraic product
of the matrices A and B. The number of
columns of A must equal the number of
rows of B.

mtimes

\ Matrix left
division

x = A\B is the solution to the equation Ax
= B. Matrices A and B must have the same
number of rows.

mldivide

2 Program Components

2-6

Operator Purpose Description Reference
Page

/ Matrix right
division

x = B/A is the solution to the equation
xA = B. Matrices A and B must have the
same number of columns. In terms of the
left division operator, B/A = (A'\B')'.

mrdivide

^ Matrix power A^B is A to the power B, if B is a scalar. For
other values of B, the calculation involves
eigenvalues and eigenvectors.

mpower

' Complex
conjugate
transpose

A' is the linear algebraic transpose of A.
For complex matrices, this is the complex
conjugate transpose.

ctranspose

More About
• “Operator Precedence” on page 2-11
• “Symbol Reference” on page 2-70

 Array Comparison with Relational Operators

2-7

Array Comparison with Relational Operators

In this section...

“Array Comparison” on page 2-7
“Logic Statements” on page 2-9

Relational operators compare operands quantitatively, using operators like “less than”,
“greater than”, and “not equal to.” The result of a relational comparison is a logical array
indicating the locations where the relation is true.

These are the relational operators in MATLAB.

Symbol Function Equivalent Description

< lt Less than
<= le Less than or equal to
> gt Greater than
>= ge Greater than or equal to
== eq Equal to
~= ne Not equal to

Array Comparison

Numeric Arrays

The relational operators perform element-wise comparisons between two arrays. The
arrays must be the same size, or one can be a scalar.

For example, if you compare two matrices of the same size, then the result is a logical
matrix of the same size with elements indicating where the relation is true.

A = [2 4 6; 8 10 12]

A =

 2 4 6

 8 10 12

2 Program Components

2-8

B = [5 5 5; 9 9 9]

B =

 5 5 5

 9 9 9

A < B

ans =

 1 1 0

 1 0 0

Similarly, you can compare one of the arrays to a scalar.

A > 7

ans =

 0 0 0

 1 1 1

Empty Arrays

The relational operators work with arrays for which any dimension has size zero. If one
array has a dimension size of zero, then the other array must either be the same size or
be a scalar. The size of that dimension in the output is also zero.

A = ones(3,0);

A == 1

ans =

 Empty matrix: 3-by-0

However, expressions such as

A == []

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with that of all
other binary operators, such as +, -, >, <, &, |, and so on.

To test for empty arrays, use isempty(A).

 Array Comparison with Relational Operators

2-9

Complex Numbers

• The operators >, <, >=, and <= use only the real part of the operands in performing
comparisons.

• The operators == and ~= test both real and imaginary parts of the operands.

Inf, NaN, NaT, and undefined Element Comparisons

• Inf values are equal to other Inf values.
• NaN values are not equal to any other numeric value, including other NaN values.
• NaT values are not equal to any other datetime value, including other NaT values.
• Undefined categorical elements are not equal to any other categorical value, including

other undefined elements.

Logic Statements

Use relational operators in conjunction with the logical operators A & B (AND), A
| B (OR), xor(A,B) (XOR), and ~A (NOT), to string together more complex logical
statements.

For example, you can locate where negative elements occur in two arrays.

A = [2 -1; -3 10]

A =

 2 -1

 -3 10

B = [0 -2; -3 -1]

B =

 0 -2

 -3 -1

A<0 & B<0

ans =

 0 1

 1 0

2 Program Components

2-10

For more examples, see “Find Array Elements That Meet a Condition” on page 5-2.

See Also
eq | ge | gt | le | lt | ne

More About
• “Array vs. Matrix Operations” on page 2-2
• “Symbol Reference” on page 2-70

 Operator Precedence

2-11

Operator Precedence

You can build expressions that use any combination of arithmetic, relational, and
logical operators. Precedence levels determine the order in which MATLAB evaluates
an expression. Within each precedence level, operators have equal precedence and are
evaluated from left to right. The precedence rules for MATLAB operators are shown in
this list, ordered from highest precedence level to lowest precedence level:

1 Parentheses ()
2 Transpose (.'), power (.^), complex conjugate transpose ('), matrix power (^)
3 Power with unary minus (.^-), unary plus (.^+), or logical negation (.^~) as well

as matrix power with unary minus (^-), unary plus (^+), or logical negation (^~).

Note: Although most operators work from left to right, the operators (^-), (.^-),
(^+), (.^+), (^~), and (.^~) work from second from the right to left. It is
recommended that you use parentheses to explicitly specify the intended precedence
of statements containing these operator combinations.

4 Unary plus (+), unary minus (-), logical negation (~)
5 Multiplication (.*), right division (./), left division (.\), matrix multiplication

(*), matrix right division (/), matrix left division (\)
6 Addition (+), subtraction (-)
7 Colon operator (:)
8 Less than (<), less than or equal to (<=), greater than (>), greater than or equal to

(>=), equal to (==), not equal to (~=)
9 Element-wise AND (&)
10 Element-wise OR (|)
11 Short-circuit AND (&&)
12 Short-circuit OR (||)

Precedence of AND and OR Operators

MATLAB always gives the & operator precedence over the | operator. Although
MATLAB typically evaluates expressions from left to right, the expression a|b&c is
evaluated as a|(b&c). It is a good idea to use parentheses to explicitly specify the
intended precedence of statements containing combinations of & and |.

2 Program Components

2-12

The same precedence rule holds true for the && and || operators.

Overriding Default Precedence

The default precedence can be overridden using parentheses, as shown in this example:

A = [3 9 5];

B = [2 1 5];

C = A./B.^2

C =

 0.7500 9.0000 0.2000

C = (A./B).^2

C =

 2.2500 81.0000 1.0000

 Average Similar Data Points Using a Tolerance

2-13

Average Similar Data Points Using a Tolerance

This example shows how to use uniquetol to find the average z-coordinate of 3-D points
that have similar (within tolerance) x and y coordinates.

Use random points picked from the peaks function in the domain as the
data set. Add a small amount of noise to the data.

xy = rand(10000,2)*6-3;

z = peaks(xy(:,1),xy(:,2)) + 0.5-rand(10000,1);

A = [xy z];

plot3(A(:,1), A(:,2), A(:,3), '.')

view(-28,32)

2 Program Components

2-14

Find points that have similar x and y coordinates using uniquetol with these options:

• Specify ByRows as true, since the rows of A contain the point coordinates.
• Specify OutputAllIndices as true to return the indices for all points that are

within tolerance of each other.
• Specify DataScale as [1 1 Inf] to use an absolute tolerance for the x and y

coordinates, while ignoring the z-coordinate.

DS = [1 1 Inf];

[C,ia] = uniquetol(A, 0.3, 'ByRows', true, ...

 'OutputAllIndices', true, 'DataScale', DS);

Average each group of points that are within tolerance (including the z-coordinates),
producing a reduced data set that still holds the general shape of the original data.

for k = 1:length(ia)

 aveA(k,:) = mean(A(ia{k},:),1);

end

Plot the resulting averaged-out points on top of the original data.

hold on

plot3(aveA(:,1), aveA(:,2), aveA(:,3), '.r', 'MarkerSize', 15)

 Average Similar Data Points Using a Tolerance

2-15

2 Program Components

2-16

Group Scattered Data Using a Tolerance
This example shows how to group scattered data points based on their proximity to
points of interest.

Create a set of random 2-D points. Then create and plot a grid of equally spaced points on
top of the random data.

x = rand(10000,2);

[a,b] = meshgrid(0:0.1:1);

gridPoints = [a(:), b(:)];

plot(x(:,1), x(:,2), '.')

hold on

plot(gridPoints(:,1), gridPoints(:,2), 'xr', 'Markersize', 6)

 Group Scattered Data Using a Tolerance

2-17

Use ismembertol to locate the data points in x that are within tolerance of the grid
points in gridPoints. Use these options with ismembertol:

• Specify ByRows as true, since the point coordinates are in the rows of x.
• Specify OutputAllIndices as true to return all of the indices for rows in x that are

within tolerance of the corresponding row in gridPoints.

[LIA,LocB] = ismembertol(gridPoints, x, 0.05, ...

 'ByRows', true, 'OutputAllIndices', true);

For each grid point, plot the points in x that are within tolerance of that grid point.

figure

hold on

for k = 1:length(LocB)

 plot(x(LocB{k},1), x(LocB{k},2), '.')

end

plot(gridPoints(:,1), gridPoints(:,2), 'xr', 'Markersize', 6)

2 Program Components

2-18

 Special Values

2-19

Special Values

Several functions return important special values that you can use in your own program
files.

Function Return Value

ans Most recent answer (variable). If you do not assign an
output variable to an expression, MATLAB automatically
stores the result in ans.

eps Floating-point relative accuracy. This is the tolerance the
MATLAB software uses in its calculations.

intmax Largest 8-, 16-, 32-, or 64-bit integer your computer can
represent.

intmin Smallest 8-, 16-, 32-, or 64-bit integer your computer can
represent.

realmax Largest floating-point number your computer can represent.
realmin Smallest positive floating-point number your computer can

represent.
pi 3.1415926535897...

i, j Imaginary unit.
inf Infinity. Calculations like n/0, where n is any nonzero real

value, result in inf.
NaN Not a Number, an invalid numeric value. Expressions

like 0/0 and inf/inf result in a NaN, as do arithmetic
operations involving a NaN. Also, if n is complex with a zero
real part, then n/0 returns a value with a NaN real part.

computer Computer type.
version MATLAB version string.

Here are some examples that use these values in MATLAB expressions.

x = 2 * pi

x =

 6.2832

A = [3+2i 7-8i]

2 Program Components

2-20

A =

 3.0000 + 2.0000i 7.0000 - 8.0000i

tol = 3 * eps

tol =

 6.6613e-016

intmax('uint64')

ans =

 18446744073709551615

 Conditional Statements

2-21

Conditional Statements

Conditional statements enable you to select at run time which block of code to execute.
The simplest conditional statement is an if statement. For example:

% Generate a random number

a = randi(100, 1);

% If it is even, divide by 2

if rem(a, 2) == 0

 disp('a is even')

 b = a/2;

end

if statements can include alternate choices, using the optional keywords elseif or
else. For example:

a = randi(100, 1);

if a < 30

 disp('small')

elseif a < 80

 disp('medium')

else

 disp('large')

end

Alternatively, when you want to test for equality against a set of known values, use a
switch statement. For example:

[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString

 case 'Monday'

 disp('Start of the work week')

 case 'Tuesday'

 disp('Day 2')

 case 'Wednesday'

 disp('Day 3')

 case 'Thursday'

 disp('Day 4')

 case 'Friday'

 disp('Last day of the work week')

 otherwise

2 Program Components

2-22

 disp('Weekend!')

end

For both if and switch, MATLAB executes the code corresponding to the first true
condition, and then exits the code block. Each conditional statement requires the end
keyword.

In general, when you have many possible discrete, known values, switch statements
are easier to read than if statements. However, you cannot test for inequality between
switch and case values. For example, you cannot implement this type of condition with
a switch:

yourNumber = input('Enter a number: ');

if yourNumber < 0

 disp('Negative')

elseif yourNumber > 0

 disp('Positive')

else

 disp('Zero')

end

See Also
end | if | return | switch

 Loop Control Statements

2-23

Loop Control Statements

With loop control statements, you can repeatedly execute a block of code. There are two
types of loops:

• for statements loop a specific number of times, and keep track of each iteration with
an incrementing index variable.

For example, preallocate a 10-element vector, and calculate five values:

x = ones(1,10);

for n = 2:6

 x(n) = 2 * x(n - 1);

end

• while statements loop as long as a condition remains true.

For example, find the first integer n for which factorial(n) is a 100-digit number:

n = 1;

nFactorial = 1;

while nFactorial < 1e100

 n = n + 1;

 nFactorial = nFactorial * n;

end

Each loop requires the end keyword.

It is a good idea to indent the loops for readability, especially when they are nested (that
is, when one loop contains another loop):

A = zeros(5,100);

for m = 1:5

 for n = 1:100

 A(m, n) = 1/(m + n - 1);

 end

end

You can programmatically exit a loop using a break statement, or skip to the next
iteration of a loop using a continue statement. For example, count the number of lines
in the help for the magic function (that is, all comment lines until a blank line):

fid = fopen('magic.m','r');

count = 0;

2 Program Components

2-24

while ~feof(fid)

 line = fgetl(fid);

 if isempty(line)

 break

 elseif ~strncmp(line,'%',1)

 continue

 end

 count = count + 1;

end

fprintf('%d lines in MAGIC help\n',count);

fclose(fid);

Tip If you inadvertently create an infinite loop (a loop that never ends on its own), stop
execution of the loop by pressing Ctrl+C.

See Also
break | continue | end | for | while

 Regular Expressions

2-25

Regular Expressions

In this section...

“What Is a Regular Expression?” on page 2-25
“Steps for Building Expressions” on page 2-27
“Operators and Characters” on page 2-30

What Is a Regular Expression?

A regular expression is a sequence of characters that defines a certain pattern. You
normally use a regular expression to search text for a group of words that matches the
pattern, for example, while parsing program input or while processing a block of text.

The character vector 'Joh?n\w*' is an example of a regular expression. It defines a
pattern that starts with the letters Jo, is optionally followed by the letter h (indicated
by 'h?'), is then followed by the letter n, and ends with any number of word characters,
that is, characters that are alphabetic, numeric, or underscore (indicated by '\w*'). This
pattern matches any of the following:

Jon, John, Jonathan, Johnny

Regular expressions provide a unique way to search a volume of text for a particular
subset of characters within that text. Instead of looking for an exact character match as
you would do with a function like strfind, regular expressions give you the ability to
look for a particular pattern of characters.

For example, several ways of expressing a metric rate of speed are:

km/h

km/hr

km/hour

kilometers/hour

kilometers per hour

You could locate any of the above terms in your text by issuing five separate search
commands:

strfind(text, 'km/h');

strfind(text, 'km/hour');

% etc.

2 Program Components

2-26

To be more efficient, however, you can build a single phrase that applies to all of these
search terms:

Translate this phrase into a regular expression (to be explained later in this section) and
you have:

pattern = 'k(ilo)?m(eters)?(/|\sper\s)h(r|our)?';

Now locate one or more of the terms using just a single command:

text = ['The high-speed train traveled at 250 ', ...

 'kilometers per hour alongside the automobile ', ...

 'travelling at 120 km/h.'];

regexp(text, pattern, 'match')

ans =

 'kilometers per hour' 'km/h'

There are four MATLAB functions that support searching and replacing characters using
regular expressions. The first three are similar in the input values they accept and the
output values they return. For details, click the links to the function reference pages.

Function Description

regexp Match regular expression.
regexpi Match regular expression, ignoring case.
regexprep Replace part of text using regular expression.
regexptranslate Translate text into regular expression.

When calling any of the first three functions, pass the text to be parsed and the
regular expression in the first two input arguments. When calling regexprep, pass an
additional input that is an expression that specifies a pattern for the replacement.

 Regular Expressions

2-27

Steps for Building Expressions

There are three steps involved in using regular expressions to search text for a particular
term:

1 Identify unique patterns in the string

This entails breaking up the text you want to search for into groups of like character
types. These character types could be a series of lowercase letters, a dollar sign
followed by three numbers and then a decimal point, etc.

2 Express each pattern as a regular expression

Use the metacharacters and operators described in this documentation to express
each segment of your search pattern as a regular expression. Then combine these
expression segments into the single expression to use in the search.

3 Call the appropriate search function

Pass the text you want to parse to one of the search functions, such as regexp or
regexpi, or to the text replacement function, regexprep.

The example shown in this section searches a record containing contact information
belonging to a group of five friends. This information includes each person's name,
telephone number, place of residence, and email address. The goal is to extract specific
information from the text..

contacts = { ...

'Harry 287-625-7315 Columbus, OH hparker@hmail.com'; ...

'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'; ...

'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net'; ...

'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net'; ...

'Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

The first part of the example builds a regular expression that represents the format
of a standard email address. Using that expression, the example then searches the
information for the email address of one of the group of friends. Contact information for
Janice is in row 2 of the contacts cell array:

contacts{2}

ans =

 Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net

2 Program Components

2-28

Step 1 — Identify Unique Patterns in the Text

A typical email address is made up of standard components: the user's account
name, followed by an @ sign, the name of the user's internet service provider (ISP),
a dot (period), and the domain to which the ISP belongs. The table below lists these
components in the left column, and generalizes the format of each component in the right
column.

Unique patterns of an email address General description of each pattern

Start with the account name
 jan_stephens . . .

One or more lowercase letters and underscores

Add '@'
 jan_stephens@ . . .

@ sign

Add the ISP
 jan_stephens@horizon . . .

One or more lowercase letters, no underscores

Add a dot (period)
 jan_stephens@horizon. . . .

Dot (period) character

Finish with the domain
 jan_stephens@horizon.net

com or net

Step 2 — Express Each Pattern as a Regular Expression

In this step, you translate the general formats derived in Step 1 into segments of a
regular expression. You then add these segments together to form the entire expression.

The table below shows the generalized format descriptions of each character pattern in
the left-most column. (This was carried forward from the right column of the table in
Step 1.) The second column shows the operators or metacharacters that represent the
character pattern.

Description of each segment Pattern

One or more lowercase letters and underscores [a-z_]+

@ sign @

One or more lowercase letters, no underscores [a-z]+

Dot (period) character \.

com or net (com|net)

 Regular Expressions

2-29

Assembling these patterns into one character vector gives you the complete expression:

email = '[a-z_]+@[a-z]+\.(com|net)';

Step 3 — Call the Appropriate Search Function

In this step, you use the regular expression derived in Step 2 to match an email address
for one of the friends in the group. Use the regexp function to perform the search.

Here is the list of contact information shown earlier in this section. Each person's record
occupies a row of the contacts cell array:

contacts = { ...

'Harry 287-625-7315 Columbus, OH hparker@hmail.com'; ...

'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'; ...

'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net'; ...

'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net'; ...

'Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

This is the regular expression that represents an email address, as derived in Step 2:

email = '[a-z_]+@[a-z]+\.(com|net)';

Call the regexp function, passing row 2 of the contacts cell array and the email
regular expression. This returns the email address for Janice.

regexp(contacts{2}, email, 'match')

ans =

 'jan_stephens@horizon.net'

MATLAB parses a character vector from left to right, “consuming” the vector as it goes.
If matching characters are found, regexp records the location and resumes parsing the
character vector, starting just after the end of the most recent match.

Make the same call, but this time for the fifth person in the list:

regexp(contacts{5}, email, 'match')

ans =

 'jason_blake@mymail.com'

You can also search for the email address of everyone in the list by using the entire cell
array for the input argument:

regexp(contacts, email, 'match');

2 Program Components

2-30

Operators and Characters

Regular expressions can contain characters, metacharacters, operators, tokens, and flags
that specify patterns to match, as described in these sections:

• “Metacharacters” on page 2-30
• “Character Representation” on page 2-31
• “Quantifiers” on page 2-32
• “Grouping Operators” on page 2-33
• “Anchors” on page 2-34
• “Lookaround Assertions” on page 2-34
• “Logical and Conditional Operators” on page 2-35
• “Token Operators” on page 2-36
• “Dynamic Expressions” on page 2-37
• “Comments” on page 2-38
• “Search Flags” on page 2-38

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to
construct a generalized pattern of characters.

Metacharacter Description Example

. Any single character, including
white space

'..ain' matches sequences of five
consecutive characters that end with
'ain'.

[c1c2c3] Any character contained within the
brackets. The following characters
are treated literally: $ | . * + ?
and - when not used to indicate a
range.

'[rp.]ain' matches 'rain' or 'pain'
or ‘.ain’.

[^c1c2c3] Any character not contained
within the brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and ‘*ain’. For
example, it matches 'gain', 'lain', or
'vain'.

 Regular Expressions

2-31

Metacharacter Description Example

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character in the
range of A through G.

\w Any alphabetic, numeric, or
underscore character. For English
character sets, \w is equivalent to
[a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not alphabetic,
numeric, or underscore. For English
character sets, \W is equivalent to
[^a-zA-Z_0-9]

'\W*' identifies a term that is not a word.

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end with
the letter n, followed by a white-space
character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit followed
by any non-white-space character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of consecutive
digits.

\D Any nondigit character; equivalent
to [^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space character,
defined by octal 40.

\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character,
defined by hex 2C.

Character Representation

Operator Description

\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab

2 Program Components

2-32

Operator Description

\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

Quantifier Matches the expression when it occurs... Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.
expr? 0 times or 1 time. '\w*(\.m)?' matches words that

optionally end with the extension .m.
expr+ 1 or more times consecutively. '' matches

an HTML tag when the file name
contains one or more characters.

expr{m,n} At least m times, but no more than n
times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to *
and +, respectively.

'' matches
an <a> HTML tag when the file name
contains one or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive digits.

Quantifiers can appear in three modes, described in the following table. q represents any
of the quantifiers in the previous table.

Mode Description Example

exprq Greedy expression: match as many
characters as possible.

Given the text
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

 Regular Expressions

2-33

Mode Description Example

exprq? Lazy expression: match as few
characters as necessary.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*?>' ends each
match at the first occurrence of the
closing bracket (>):

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as much as
possible, but do not rescan any portions
of the text.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*+>' does not
return any matches, because the closing
bracket is captured using .*, and is not
rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements,
or disable backtracking in a specific group.

Grouping
Operator

Description Example

(expr) Group elements of the expression and
capture tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches
two consecutive patterns of a vowel
followed by a nonvowel, such as 'anon'.

Without grouping, '[aeiou][^aeiou]
{2}'matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack
within the group to complete the match,
and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the
atomic group, Z is captured using .* and
is not rescanned.

(expr1|

expr2)

Match expression expr1 or expression
expr2.

'(let|tel)\w+' matches words that
start with let or tel.

2 Program Components

2-34

Grouping
Operator

Description Example

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress tokens
or group atomically.

Anchors

Anchors in the expression match the beginning or end of a character vector or word.

Anchor Matches the... Example

^expr Beginning of the input text. '^M\w*' matches a word starting with
M at the beginning of the text.

expr$ End of the input text. '\w*m$' matches words ending with m
at the end of the text.

\<expr Beginning of a word. '\<n\w*' matches any words starting
with n.

expr\> End of a word. '\w*e\>' matches any words ending
with e.

Lookaround Assertions

Lookaround assertions look for patterns that immediately precede or follow the intended
match, but are not part of the match.

The pointer remains at the current location, and characters that correspond to the test
expression are not captured or discarded. Therefore, lookahead assertions can match
overlapping character groups.

Lookaround
Assertion

Description Example

expr(?=test) Look ahead for characters that match
test.

'\w*(?=ing)' matches terms that are
followed by ing, such as 'Fly' and
'fall' in the input text 'Flying,
not falling.'

 Regular Expressions

2-35

Lookaround
Assertion

Description Example

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that match
test.

'(?<=re)\w*' matches terms that
follow 're', such as 'new', 'use', and
'cycle' in the input text 'renew,
reuse, recycle'

(?<!test)expr Look behind for characters that do not
match test.

'(?<!\d)(\d)(?!\d)' matches single-
digit numbers (digits that do not precede
or follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a
logical AND.

Operation Description Example

(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches
consonants.

(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches
consonants.

For more information, see “Lookahead Assertions in Regular Expressions” on page
2-40.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and
then use the outcome to determine which pattern, if any, to match next. These operators
support logical OR and if or if/else conditions. (For AND conditions, see “Lookaround
Assertions” on page 2-34.)

Conditions can be tokens, lookaround assertions, or dynamic expressions of the form (?
@cmd). Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example

expr1|expr2 Match expression expr1 or
expression expr2.

'(let|tel)\w+' matches words
that start with let or tel.

2 Program Components

2-36

Conditional Operator Description Example

If there is a match with expr1,
then expr2 is ignored.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'

matches a drive name, such as C:\,
when run on a Windows system.

(?(cond)expr1|

expr2)

If condition cond is true, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)

\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular
expression in parentheses. You can refer to a token by its sequence in the text (an ordinal
token), or assign names to tokens for easier code maintenance and readable output.

Ordinal Token Operator Description Example

(expr) Capture in a token the characters
that match the enclosed
expression.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such
as 'title' from the text
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)

\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Named Token Operator Description Example

(?<name>expr) Capture in a named token
the characters that match the
enclosed expression.

'(?<month>\d+)-(?<day>\d+)-

(?<yr>\d+)' creates named tokens
for the month, day, and year in an
input date of the form mm-dd-yy.

 Regular Expressions

2-37

Named Token Operator Description Example

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</

\k<tag>>' captures tokens for
HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(name)expr1|

expr2)

If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?

(sex)her|his) \w*' matches
text that includes her when the text
begins with Mrs, or that includes
his when the text begins with Mr.

Note: If an expression has nested parentheses, MATLAB captures tokens that
correspond to the outermost set of parentheses. For example, given the search pattern
'(and(y|rew))', MATLAB creates a token for 'andrew' but not for 'y' or 'rew'.

For more information, see “Tokens in Regular Expressions” on page 2-43.

Dynamic Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression
to determine the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

Operator Description Example

(??expr) Parse expr and include the resulting
term in the match expression.

When parsed, expr must correspond
to a complete, valid regular
expression. Dynamic expressions that
use the backslash escape character (\)
require two backslashes: one for the
initial parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'

determines how many characters
to match by reading a digit at
the beginning of the match. The
dynamic expression is enclosed in
a second set of parentheses so that
the resulting match is captured in
a token. For instance, matching
'5XXXXX' captures tokens for '5'
and 'XXXXX'.

2 Program Components

2-38

Operator Description Example

(??@cmd) Execute the MATLAB command
represented by cmd, and include the
output returned by the command in
the match expression.

'(.{2,}).?(??@fliplr($1))'

finds palindromes that are at least
four characters long, such as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard any
output the command returns. (Helpful
for diagnosing regular expressions.)

'\w*?(\w)(?@disp($1))\1\w*'

matches words that include double
letters (such as pp), and displays
intermediate results.

Within dynamic expressions, use the following operators to define replacement terms.

Replacement Operator Description

$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

For more information, see “Dynamic Regular Expressions” on page 2-49.

Comments

The comment operator enables you to insert comments into your code to make it more
maintainable. The text of the comment is ignored by MATLAB when matching against
the input text.

Characters Description Example

(?#comment) Insert a comment in the regular
expression. The comment text is
ignored when matching the input.

'(?# Initial digit)\<\d\w+'

includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions.

 Regular Expressions

2-39

Flag Description

(?-i) Match letter case (default for regexp and regexprep).
(?i) Do not match letter case (default for regexpi).
(?s) Match dot (.) in the pattern with any character (default).
(?-s) Match dot in the pattern with any character that is not a newline

character.
(?-m) Match the ^ and $ metacharacters at the beginning and end of text

(default).
(?m) Match the ^ and $ metacharacters at the beginning and end of a line.
(?-x) Include space characters and comments when matching (default).
(?x) Ignore space characters and comments when matching. Use '\ ' and

'\#' to match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.

See Also
regexp | regexpi | regexprep | regexptranslate

More About
• “Lookahead Assertions in Regular Expressions” on page 2-40
• “Tokens in Regular Expressions” on page 2-43
• “Dynamic Regular Expressions” on page 2-49

2 Program Components

2-40

Lookahead Assertions in Regular Expressions

In this section...

“Lookahead Assertions” on page 2-40
“Overlapping Matches” on page 2-40
“Logical AND Conditions” on page 2-41

Lookahead Assertions

There are two types of lookaround assertions for regular expressions: lookahead and
lookbehind. In both cases, the assertion is a condition that must be satisfied to return a
match to the expression.

A lookahead assertion has the form (?=test) and can appear anywhere in a regular
expression. MATLAB looks ahead of the current location in the text for the test condition.
If MATLAB matches the test condition, it continues processing the rest of the expression
to find a match.

For example, look ahead in a character vector specifying a path to find the name of the
folder that contains a program file (in this case, fileread.m).

chr = which('fileread')

chr =

 matlabroot\toolbox\matlab\iofun\fileread.m

regexp(chr,'\w+(?=\\\w+\.[mp])','match')

ans =

 'iofun'

The match expression, \w+, searches for one or more alphanumeric or underscore
characters. Each time regexp finds a term that matches this condition, it looks ahead for
a backslash (specified with two backslashes, \\), followed by a file name (\w+) with an
.m or .p extension (\.[mp]). The regexp function returns the match that satisfies the
lookahead condition, which is the folder name iofun.

Overlapping Matches

Lookahead assertions do not consume any characters in the text. As a result, you can use
them to find overlapping character sequences.

 Lookahead Assertions in Regular Expressions

2-41

For example, use lookahead to find every sequence of six nonwhitespace characters in a
character vector by matching initial characters that precede five additional characters:

chr = 'Locate several 6-char. phrases';

startIndex = regexpi(chr,'\S(?=\S{5})')

startIndex =

 1 8 9 16 17 24 25

The starting indices correspond to these phrases:

Locate severa everal 6-char -char. phrase hrases

Without the lookahead operator, MATLAB parses a character vector from left to right,
consuming the vector as it goes. If matching characters are found, regexp records the
location and resumes parsing the character vector from the location of the most recent
match. There is no overlapping of characters in this process.

chr = 'Locate several 6-char. phrases';

startIndex = regexpi(chr,'\S{6}')

startIndex =

 1 8 16 24

The starting indices correspond to these phrases:

Locate severa 6-char phrase

Logical AND Conditions

Another way to use a lookahead operation is to perform a logical AND between two
conditions. This example initially attempts to locate all lowercase consonants in a
character array consisting of the first 50 characters of the help for the normest function:

helptext = help('normest');

chr = helptext(1:50)

chr =

 NORMEST Estimate the matrix 2-norm.

 NORMEST(S

Merely searching for non-vowels ([^aeiou]) does not return the expected answer, as the
output includes capital letters, space characters, and punctuation:

c = regexp(chr,'[^aeiou]','match')

2 Program Components

2-42

c =

 Columns 1 through 14

 ' ' 'N' 'O' 'R' 'M' 'E' 'S' 'T' ' '

 'E' 's' 't' 'm' 't'

 ...

Try this again, using a lookahead operator to create the following AND condition:

(lowercase letter) AND (not a vowel)

This time, the result is correct:

c = regexp(chr,'(?=[a-z])[^aeiou]','match')

c =

 's' 't' 'm ' 't' 't' 'h' 'm' 't' 'r' 'x'

 'n' 'r' 'm'

Note that when using a lookahead operator to perform an AND, you need to place the
match expression expr after the test expression test:

(?=test)expr or (?!test)expr

See Also
regexp | regexpi | regexprep

More About
• “Regular Expressions” on page 2-25

 Tokens in Regular Expressions

2-43

Tokens in Regular Expressions

In this section...

“Introduction” on page 2-43
“Multiple Tokens” on page 2-44
“Unmatched Tokens” on page 2-45
“Tokens in Replacement Text” on page 2-46
“Named Capture” on page 2-47

Introduction

Parentheses used in a regular expression not only group elements of that expression
together, but also designate any matches found for that group as tokens. You can use
tokens to match other parts of the same text. One advantage of using tokens is that they
remember what they matched, so you can recall and reuse matched text in the process of
searching or replacing.

Each token in the expression is assigned a number, starting from 1, going from left to
right. To make a reference to a token later in the expression, refer to it using a backslash
followed by the token number. For example, when referencing a token generated by the
third set of parentheses in the expression, use \3.

As a simple example, if you wanted to search for identical sequential letters in a
character array, you could capture the first letter as a token and then search for a
matching character immediately afterwards. In the expression shown below, the (\S)
phrase creates a token whenever regexp matches any nonwhitespace character in the
character array. The second part of the expression, '\1', looks for a second instance of
the same character immediately following the first:

poe = ['While I nodded, nearly napping, ' ...

 'suddenly there came a tapping,'];

[mat,tok,ext] = regexp(poe, '(\S)\1', 'match', ...

 'tokens', 'tokenExtents');

mat

mat =

 'dd' 'pp' 'dd' 'pp'

The tokens returned in cell array tok are:

2 Program Components

2-44

'd', 'p', 'd', 'p'

Starting and ending indices for each token in poe are:

11 11, 26 26, 35 35, 57 57

For another example, capture pairs of matching HTML tags (e.g., <a> and) and the
text between them. The expression used for this example is

expr = '<(\w+).*?>.*?</\1>';

The first part of the expression, '<(\w+)', matches an opening bracket (<) followed by
one or more alphabetic, numeric, or underscore characters. The enclosing parentheses
capture token characters following the opening bracket.

The second part of the expression, '.*?>.*?', matches the remainder of this HTML tag
(characters up to the >), and any characters that may precede the next opening bracket.

The last part, '</\1>', matches all characters in the ending HTML tag. This tag is
composed of the sequence </tag>, where tag is whatever characters were captured as a
token.

hstr = '<!comment>Default
';

expr = '<(\w+).*?>.*?</\1>';

[mat,tok] = regexp(hstr, expr, 'match', 'tokens');

mat{:}

ans =

ans =

 Default

tok{:}

ans =

 'a'

ans =

 'b'

Multiple Tokens

Here is an example of how tokens are assigned values. Suppose that you are going to
search the following text:

 Tokens in Regular Expressions

2-45

andy ted bob jim andrew andy ted mark

You choose to search the above text with the following search pattern:

and(y|rew)|(t)e(d)

This pattern has three parenthetical expressions that generate tokens. When you finally
perform the search, the following tokens are generated for each match.

Match Token 1 Token 2

andy y
ted t d

andrew rew
andy y
ted t d

Only the highest level parentheses are used. For example, if the search pattern and(y|
rew) finds the text andrew, token 1 is assigned the value rew. However, if the search
pattern (and(y|rew)) is used, token 1 is assigned the value andrew.

Unmatched Tokens

For those tokens specified in the regular expression that have no match in the text
being evaluated, regexp and regexpi return an empty character vector ('') as the
token output, and an extent that marks the position in the string where the token was
expected.

The example shown here executes regexp on a character vector specifying the path
returned from the MATLAB tempdir function. The regular expression expr includes
six token specifiers, one for each piece of the path. The third specifier [a-z]+ has no
match in the character vector because this part of the path, Profiles, begins with an
uppercase letter:

chr = tempdir

chr =

 C:\WINNT\Profiles\bpascal\LOCALS~1\Temp\

expr = ['([A-Z]:)\\(WINNT)\\([a-z]+)?.*\\' ...

2 Program Components

2-46

 '([a-z]+)\\([A-Z]+~\d)\\(Temp)\\'];

[tok, ext] = regexp(chr, expr, 'tokens', 'tokenExtents');

When a token is not found in the text, regexp returns an empty character vector ('') as
the token and a numeric array with the token extent. The first number of the extent is
the string index that marks where the token was expected, and the second number of the
extent is equal to one less than the first.

In the case of this example, the empty token is the third specified in the expression, so
the third token returned is empty:

tok{:}

ans =

 'C:' 'WINNT' '' 'bpascal' 'LOCALS~1' 'Temp'

The third token extent returned in the variable ext has the starting index set to 10,
which is where the nonmatching term, Profiles, begins in the path. The ending extent
index is set to one less than the starting index, or 9:

ext{:}

ans =

 1 2

 4 8

 10 9

 19 25

 27 34

 36 39

Tokens in Replacement Text

When using tokens in replacement text, reference them using $1, $2, etc. instead of
\1, \2, etc. This example captures two tokens and reverses their order. The first, $1,
is 'Norma Jean' and the second, $2, is 'Baker'. Note that regexprep returns the
modified text, not a vector of starting indices.

regexprep('Norma Jean Baker', '(\w+\s\w+)\s(\w+)', '$2, $1')

ans =

 Baker, Norma Jean

 Tokens in Regular Expressions

2-47

Named Capture

If you use a lot of tokens in your expressions, it may be helpful to assign them names
rather than having to keep track of which token number is assigned to which token.

When referencing a named token within the expression, use the syntax \k<name>
instead of the numeric \1, \2, etc.:

poe = ['While I nodded, nearly napping, ' ...

 'suddenly there came a tapping,'];

regexp(poe, '(?<anychar>.)\k<anychar>', 'match')

ans =

 'dd' 'pp' 'dd' 'pp'

Named tokens can also be useful in labeling the output from the MATLAB regular
expression functions. This is especially true when you are processing many pieces of text.

For example, parse different parts of street addresses from several character vectors. A
short name is assigned to each token in the expression:

chr1 = '134 Main Street, Boulder, CO, 14923';

chr2 = '26 Walnut Road, Topeka, KA, 25384';

chr3 = '847 Industrial Drive, Elizabeth, NJ, 73548';

p1 = '(?<adrs>\d+\s\S+\s(Road|Street|Avenue|Drive))';

p2 = '(?<city>[A-Z][a-z]+)';

p3 = '(?<state>[A-Z]{2})';

p4 = '(?<zip>\d{5})';

expr = [p1 ', ' p2 ', ' p3 ', ' p4];

As the following results demonstrate, you can make your output easier to work with by
using named tokens:

loc1 = regexp(chr1, expr, 'names')

loc1 =

 adrs: '134 Main Street'

 city: 'Boulder'

 state: 'CO'

 zip: '14923'

loc2 = regexp(chr2, expr, 'names')

2 Program Components

2-48

loc2 =

 adrs: '26 Walnut Road'

 city: 'Topeka'

 state: 'KA'

 zip: '25384'

loc3 = regexp(chr3, expr, 'names')

loc3 =

 adrs: '847 Industrial Drive'

 city: 'Elizabeth'

 state: 'NJ'

 zip: '73548'

See Also
regexp | regexpi | regexprep

More About
• “Regular Expressions” on page 2-25

 Dynamic Regular Expressions

2-49

Dynamic Regular Expressions

In this section...

“Introduction” on page 2-49
“Dynamic Match Expressions — (??expr)” on page 2-50
“Commands That Modify the Match Expression — (??@cmd)” on page 2-51
“Commands That Serve a Functional Purpose — (?@cmd)” on page 2-52
“Commands in Replacement Expressions — ${cmd}” on page 2-54

Introduction

In a dynamic expression, you can make the pattern that you want regexp to match
dependent on the content of the input text. In this way, you can more closely match
varying input patterns in the text being parsed. You can also use dynamic expressions
in replacement terms for use with the regexprep function. This gives you the ability to
adapt the replacement text to the parsed input.

You can include any number of dynamic expressions in the match_expr or
replace_expr arguments of these commands:

regexp(text, match_expr)

regexpi(text, match_expr)

regexprep(text, match_expr, replace_expr)

As an example of a dynamic expression, the following regexprep command correctly
replaces the term internationalization with its abbreviated form, i18n. However,
to use it on a different term such as globalization, you have to use a different
replacement expression:

match_expr = '(^\w)(\w*)(\w$)';

replace_expr1 = '$118$3';

regexprep('internationalization', match_expr, replace_expr1)

ans =

 i18n

replace_expr2 = '$111$3';

regexprep('globalization', match_expr, replace_expr2)

2 Program Components

2-50

ans =

 g11n

Using a dynamic expression ${num2str(length($2))} enables you to base the
replacement expression on the input text so that you do not have to change the
expression each time. This example uses the dynamic replacement syntax ${cmd}.

match_expr = '(^\w)(\w*)(\w$)';

replace_expr = '1{num2str(length($2))}$3';

regexprep('internationalization', match_expr, replace_expr)

ans =

 i18n

regexprep('globalization', match_expr, replace_expr)

ans =

 g11n

When parsed, a dynamic expression must correspond to a complete, valid regular
expression. In addition, dynamic match expressions that use the backslash escape
character (\) require two backslashes: one for the initial parsing of the expression, and
one for the complete match. The parentheses that enclose dynamic expressions do not
create a capturing group.

There are three forms of dynamic expressions that you can use in match expressions, and
one form for replacement expressions, as described in the following sections

Dynamic Match Expressions — (??expr)

The (??expr) operator parses expression expr, and inserts the results back into the
match expression. MATLAB then evaluates the modified match expression.

Here is an example of the type of expression that you can use with this operator:

chr = {'5XXXXX', '8XXXXXXXX', '1X'};

regexp(chr, '^(\d+)(??X{$1})$', 'match', 'once');

The purpose of this particular command is to locate a series of X characters in each of
the character vectors stored in the input cell array. Note however that the number of Xs
varies in each character vector. If the count did not vary, you could use the expression
X{n} to indicate that you want to match n of these characters. But, a constant value of n
does not work in this case.

 Dynamic Regular Expressions

2-51

The solution used here is to capture the leading count number (e.g., the 5 in the first
character vector of the cell array) in a token, and then to use that count in a dynamic
expression. The dynamic expression in this example is (??X{$1}), where $1 is the value
captured by the token \d+. The operator {$1} makes a quantifier of that token value.
Because the expression is dynamic, the same pattern works on all three of the input
vectors in the cell array. With the first input character vector, regexp looks for five X
characters; with the second, it looks for eight, and with the third, it looks for just one:

regexp(chr, '^(\d+)(??X{$1})$', 'match', 'once')

ans =

 '5XXXXX' '8XXXXXXXX' '1X'

Commands That Modify the Match Expression — (??@cmd)

MATLAB uses the (??@cmd) operator to include the results of a MATLAB command in
the match expression. This command must return a term that can be used within the
match expression.

For example, use the dynamic expression (??@flilplr($1)) to locate a palindrome,
“Never Odd or Even”, that has been embedded into a larger character vector.

First, create the input string. Make sure that all letters are lowercase, and remove all
nonword characters.

chr = lower(...

 'Find the palindrome Never Odd or Even in this string');

chr = regexprep(str, '\W*', '')

chr =

 findthepalindromeneveroddoreveninthisstring

Locate the palindrome within the character vector using the dynamic expression:

palchr = regexp(chr, '(.{3,}).?(??@fliplr($1))', 'match')

palchr =

 'neveroddoreven'

The dynamic expression reverses the order of the letters that make up the character
vector, and then attempts to match as much of the reversed-order vector as possible. This
requires a dynamic expression because the value for $1 relies on the value of the token
(.{3,}).

2 Program Components

2-52

Dynamic expressions in MATLAB have access to the currently active workspace.
This means that you can change any of the functions or variables used in a dynamic
expression just by changing variables in the workspace. Repeat the last command of the
example above, but this time define the function to be called within the expression using
a function handle stored in the base workspace:

fun = @fliplr;

palchr = regexp(str, '(.{3,}).?(??@fun($1))', 'match')

palchr =

 'neveroddoreven'

Commands That Serve a Functional Purpose — (?@cmd)

The (?@cmd) operator specifies a MATLAB command that regexp or regexprep is to
run while parsing the overall match expression. Unlike the other dynamic expressions
in MATLAB, this operator does not alter the contents of the expression it is used in.
Instead, you can use this functionality to get MATLAB to report just what steps it is
taking as it parses the contents of one of your regular expressions. This functionality can
be useful in diagnosing your regular expressions.

The following example parses a word for zero or more characters followed by two
identical characters followed again by zero or more characters:

regexp('mississippi', '\w*(\w)\1\w*', 'match')

ans =

 'mississippi'

To track the exact steps that MATLAB takes in determining the match, the example
inserts a short script (?@disp($1)) in the expression to display the characters that
finally constitute the match. Because the example uses greedy quantifiers, MATLAB
attempts to match as much of the character vector as possible. So, even though MATLAB
finds a match toward the beginning of the string, it continues to look for more matches
until it arrives at the very end of the string. From there, it backs up through the letters i
then p and the next p, stopping at that point because the match is finally satisfied:

regexp('mississippi', '\w*(\w)(?@disp($1))\1\w*', 'match')

i

p

p

 Dynamic Regular Expressions

2-53

ans =

 'mississippi'

Now try the same example again, this time making the first quantifier lazy (*?). Again,
MATLAB makes the same match:

regexp('mississippi', '\w*?(\w)\1\w*', 'match')

ans =

 'mississippi'

But by inserting a dynamic script, you can see that this time, MATLAB has matched the
text quite differently. In this case, MATLAB uses the very first match it can find, and
does not even consider the rest of the text:

regexp('mississippi', '\w*?(\w)(?@disp($1))\1\w*', 'match')

m

i

s

ans =

 'mississippi'

To demonstrate how versatile this type of dynamic expression can be, consider the next
example that progressively assembles a cell array as MATLAB iteratively parses the
input text. The (?!) operator found at the end of the expression is actually an empty
lookahead operator, and forces a failure at each iteration. This forced failure is necessary
if you want to trace the steps that MATLAB is taking to resolve the expression.

MATLAB makes a number of passes through the input text, each time trying another
combination of letters to see if a fit better than last match can be found. On any passes in
which no matches are found, the test results in an empty character vector. The dynamic
script (?@if(~isempty($&))) serves to omit the empty character vectors from the
matches cell array:

matches = {};

expr = ['(Euler\s)?(Cauchy\s)?(Boole)?(?@if(~isempty($&)),' ...

 'matches{end+1}=$&;end)(?!)'];

regexp('Euler Cauchy Boole', expr);

matches

2 Program Components

2-54

matches =

 'Euler Cauchy Boole' 'Euler Cauchy ' 'Euler '

'Cauchy Boole' 'Cauchy ' 'Boole'

The operators $& (or the equivalent $0), $`, and $' refer to that part of the input
text that is currently a match, all characters that precede the current match, and all
characters to follow the current match, respectively. These operators are sometimes
useful when working with dynamic expressions, particularly those that employ the (?
@cmd) operator.

This example parses the input text looking for the letter g. At each iteration through the
text, regexp compares the current character with g, and not finding it, advances to the
next character. The example tracks the progress of scan through the text by marking the
current location being parsed with a ^ character.

(The $` and $´ operators capture that part of the text that precedes and follows the
current parsing location. You need two single-quotation marks ($'') to express the
sequence $´ when it appears within text.)

chr = 'abcdefghij';

expr = '(?@disp(sprintf(''starting match: [%s^%s]'',$`,$'')))g';

regexp(chr, expr, 'once');

starting match: [^abcdefghij]

starting match: [a^bcdefghij]

starting match: [ab^cdefghij]

starting match: [abc^defghij]

starting match: [abcd^efghij]

starting match: [abcde^fghij]

starting match: [abcdef^ghij]

Commands in Replacement Expressions — ${cmd}

The ${cmd} operator modifies the contents of a regular expression replacement pattern,
making this pattern adaptable to parameters in the input text that might vary from one
use to the next. As with the other dynamic expressions used in MATLAB, you can include
any number of these expressions within the overall replacement expression.

In the regexprep call shown here, the replacement pattern is '${convertMe($1,
$2)}'. In this case, the entire replacement pattern is a dynamic expression:

regexprep('This highway is 125 miles long', ...

 Dynamic Regular Expressions

2-55

 '(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}');

The dynamic expression tells MATLAB to execute a function named convertMe using
the two tokens (\d+\.?\d*) and (\w+), derived from the text being matched, as input
arguments in the call to convertMe. The replacement pattern requires a dynamic
expression because the values of $1 and $2 are generated at runtime.

The following example defines the file named convertMe that converts measurements
from imperial units to metric.

function valout = convertMe(valin, units)

switch(units)

 case 'inches'

 fun = @(in)in .* 2.54;

 uout = 'centimeters';

 case 'miles'

 fun = @(mi)mi .* 1.6093;

 uout = 'kilometers';

 case 'pounds'

 fun = @(lb)lb .* 0.4536;

 uout = 'kilograms';

 case 'pints'

 fun = @(pt)pt .* 0.4731;

 uout = 'litres';

 case 'ounces'

 fun = @(oz)oz .* 28.35;

 uout = 'grams';

end

val = fun(str2num(valin));

valout = [num2str(val) ' ' uout];

end

At the command line, call the convertMe function from regexprep, passing in values
for the quantity to be converted and name of the imperial unit:

regexprep('This highway is 125 miles long', ...

 '(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =

 This highway is 201.1625 kilometers long

regexprep('This pitcher holds 2.5 pints of water', ...

 '(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =

2 Program Components

2-56

 This pitcher holds 1.1828 litres of water

regexprep('This stone weighs about 10 pounds', ...

 '(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =

 This stone weighs about 4.536 kilograms

As with the (??@) operator discussed in an earlier section, the ${ } operator has
access to variables in the currently active workspace. The following regexprep
command uses the array A defined in the base workspace:

A = magic(3)

A =

 8 1 6

 3 5 7

 4 9 2

regexprep('The columns of matrix _nam are _val', ...

 {'_nam', '_val'}, ...

 {'A', '${sprintf(''%d%d%d '', A)}'})

ans =

The columns of matrix A are 834 159 672

See Also
regexp | regexpi | regexprep

More About
• “Regular Expressions” on page 2-25

 Comma-Separated Lists

2-57

Comma-Separated Lists

In this section...

“What Is a Comma-Separated List?” on page 2-57
“Generating a Comma-Separated List” on page 2-57
“Assigning Output from a Comma-Separated List” on page 2-59
“Assigning to a Comma-Separated List” on page 2-60
“How to Use the Comma-Separated Lists” on page 2-62
“Fast Fourier Transform Example” on page 2-64

What Is a Comma-Separated List?

Typing in a series of numbers separated by commas gives you what is called a comma-
separated list. The MATLAB software returns each value individually:

1,2,3

ans =

 1

ans =

 2

ans =

 3

Such a list, by itself, is not very useful. But when used with large and more complex data
structures like MATLAB structures and cell arrays, the comma-separated list can enable
you to simplify your MATLAB code.

Generating a Comma-Separated List

This section describes how to generate a comma-separated list from either a cell array or
a MATLAB structure.

2 Program Components

2-58

Generating a List from a Cell Array

Extracting multiple elements from a cell array yields a comma-separated list. Given a 4-
by-6 cell array as shown here

C = cell(4,6);

for k = 1:24

 C{k} = k*2;

end

C

C =

 [2] [10] [18] [26] [34] [42]

 [4] [12] [20] [28] [36] [44]

 [6] [14] [22] [30] [38] [46]

 [8] [16] [24] [32] [40] [48]

extracting the fifth column generates the following comma-separated list:

C{:,5}

ans =

 34

ans =

 36

ans =

 38

ans =

 40

This is the same as explicitly typing

C{1,5},C{2,5},C{3,5},C{4,5}

 Comma-Separated Lists

2-59

Generating a List from a Structure

For structures, extracting a field of the structure that exists across one of its dimensions
yields a comma-separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure with
six fields: f1 through f6. Read field f5 for all rows and MATLAB returns a comma-
separated list:

S = cell2struct(C,{'f1','f2','f3','f4','f5','f6'},2);

S.f5

ans =

 34

ans =

 36

ans =

 38

ans =

 40

This is the same as explicitly typing

S(1).f5,S(2).f5,S(3).f5,S(4).f5

Assigning Output from a Comma-Separated List

You can assign any or all consecutive elements of a comma-separated list to variables
with a simple assignment statement. Using the cell array C from the previous section,
assign the first row to variables c1 through c6:

C = cell(4,6);

for k = 1:24

 C{k} = k*2;

2 Program Components

2-60

end

[c1,c2,c3,c4,c5,c6] = C{1,1:6};

c5

c5 =

 34

If you specify fewer output variables than the number of outputs returned by the
expression, MATLAB assigns the first N outputs to those N variables, and then discards
any remaining outputs. In this next example, MATLAB assigns C{1,1:3} to the
variables c1, c2, and c3, and then discards C{1,4:6}:

[c1,c2,c3] = C{1,1:6};

You can assign structure outputs in the same manner:

S = cell2struct(C,{'f1','f2','f3','f4','f5','f6'},2);

[sf1,sf2,sf3] = S.f5;

sf3

sf3 =

 38

You also can use the deal function for this purpose.

Assigning to a Comma-Separated List

The simplest way to assign multiple values to a comma-separated list is to use the deal
function. This function distributes all of its input arguments to the elements of a comma-
separated list.

This example uses deal to overwrite each element in a comma-separated list. First
create a list.

c{1} = [31 07];

c{2} = [03 78];

c{:}

ans =

 31 7

ans =

 Comma-Separated Lists

2-61

 3 78

Use deal to overwrite each element in the list.

[c{:}] = deal([10 20],[14 12]);

c{:}

ans =

 10 20

ans =

 14 12

This example does the same as the one above, but with a comma-separated list of vectors
in a structure field:

s(1).field1 = [31 07];

s(2).field1 = [03 78];

s.field1

ans =

 31 7

ans =

 3 78

Use deal to overwrite the structure fields.

[s.field1] = deal([10 20],[14 12]);

s.field1

ans =

 10 20

ans =

 14 12

2 Program Components

2-62

How to Use the Comma-Separated Lists

Common uses for comma-separated lists are

• “Constructing Arrays” on page 2-62
• “Displaying Arrays” on page 2-62
• “Concatenation” on page 2-63
• “Function Call Arguments” on page 2-63
• “Function Return Values” on page 2-64

The following sections provide examples of using comma-separated lists with cell arrays.
Each of these examples applies to MATLAB structures as well.

Constructing Arrays

You can use a comma-separated list to enter a series of elements when constructing a
matrix or array. Note what happens when you insert a list of elements as opposed to
adding the cell itself.

When you specify a list of elements with C{:, 5}, MATLAB inserts the four individual
elements:

A = {'Hello',C{:,5},magic(4)}

A =

 'Hello' [34] [36] [38] [40] [4x4 double]

When you specify the C cell itself, MATLAB inserts the entire cell array:

A = {'Hello',C,magic(4)}

A =

 'Hello' {4x6 cell} [4x4 double]

Displaying Arrays

Use a list to display all or part of a structure or cell array:

A{:}

ans =

 Comma-Separated Lists

2-63

Hello

ans =

 [2] [10] [18] [26] [34] [42]

 [4] [12] [20] [28] [36] [44]

 [6] [14] [22] [30] [38] [46]

 [8] [16] [24] [32] [40] [48]

ans =

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

Concatenation

Putting a comma-separated list inside square brackets extracts the specified elements
from the list and concatenates them:

A = [C{:,5:6}]

A =

 34 36 38 40 42 44 46 48

Function Call Arguments

When writing the code for a function call, you enter the input arguments as a list with
each argument separated by a comma. If you have these arguments stored in a structure
or cell array, then you can generate all or part of the argument list from the structure
or cell array instead. This can be especially useful when passing in variable numbers of
arguments.

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;

Y = tan(sin(X)) - sin(tan(X));

C = cell(2,3);

C{1,1} = 'LineWidth';

2 Program Components

2-64

C{2,1} = 2;

C{1,2} = 'MarkerEdgeColor';

C{2,2} = 'k';

C{1,3} = 'MarkerFaceColor';

C{2,3} = 'g';

figure

plot(X,Y,'--rs',C{:})

Function Return Values

MATLAB functions can also return more than one value to the caller. These values are
returned in a list with each value separated by a comma. Instead of listing each return
value, you can use a comma-separated list with a structure or cell array. This becomes
more useful for those functions that have variable numbers of return values.

This example returns three values to a cell array:

C = cell(1,3);

[C{:}] = fileparts('work/mytests/strArrays.mat')

C =

 'work/mytests' 'strArrays' '.mat'

Fast Fourier Transform Example

The fftshift function swaps the left and right halves of each dimension of an array.
For a simple vector such as [0 2 4 6 8 10] the output would be [6 8 10 0 2 4].
For a multidimensional array, fftshift performs this swap along each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown above, the
index [1 2 3 4 5 6] is rearranged to form a new index [4 5 6 1 2 3]. The function
then uses this index vector to reposition the elements. For a multidimensional array,
fftshift must construct an index vector for each dimension. A comma-separated list
makes this task much simpler.

Here is the fftshift function:

function y = fftshift(x)

 numDims = ndims(x);

 idx = cell(1,numDims);

 for k = 1:numDims

 m = size(x,k);

 Comma-Separated Lists

2-65

 p = ceil(m/2);

 idx{k} = [p+1:m 1:p];

 end

 y = x(idx{:});

end

The function stores the index vectors in cell array idx. Building this cell array is
relatively simple. For each of the N dimensions, determine the size of that dimension and
find the integer index nearest the midpoint. Then, construct a vector that swaps the two
halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list for the
indexing operation, fftshift shifts arrays of any dimension using just a single
operation: y = x(idx{:}). If you were to use explicit indexing, you would need to write
one if statement for each dimension you want the function to handle:

 if ndims(x) == 1

 y = x(index1);

 else if ndims(x) == 2

 y = x(index1,index2);

 end

 end

Another way to handle this without a comma-separated list would be to loop over each
dimension, converting one dimension at a time and moving data each time. With a
comma-separated list, you move the data just once. A comma-separated list makes it very
easy to generalize the swapping operation to an arbitrary number of dimensions.

2 Program Components

2-66

Alternatives to the eval Function

In this section...

“Why Avoid the eval Function?” on page 2-66
“Variables with Sequential Names” on page 2-66
“Files with Sequential Names” on page 2-67
“Function Names in Variables” on page 2-68
“Field Names in Variables” on page 2-68
“Error Handling” on page 2-69

Why Avoid the eval Function?

Although the eval function is very powerful and flexible, it not always the best solution
to a programming problem. Code that calls eval is often less efficient and more difficult
to read and debug than code that uses other functions or language constructs. For
example:

• MATLAB compiles code the first time you run it to enhance performance for future
runs. However, because code in an eval statement can change at run time, it is not
compiled.

• Code within an eval statement can unexpectedly create or assign to a variable
already in the current workspace, overwriting existing data.

• Concatenating strings within an eval statement is often difficult to read. Other
language constructs can simplify the syntax in your code.

For many common uses of eval, there are preferred alternate approaches, as shown in
the following examples.

Variables with Sequential Names

A frequent use of the eval function is to create sets of variables such as A1, A2, ...,
An, but this approach does not use the array processing power of MATLAB and is not
recommended. The preferred method is to store related data in a single array. If the data
sets are of different types or sizes, use a structure or cell array.

For example, create a cell array that contains 10 elements, where each element is a
numeric array:

 Alternatives to the eval Function

2-67

numArrays = 10;

A = cell(numArrays,1);

for n = 1:numArrays

 A{n} = magic(n);

end

Access the data in the cell array by indexing with curly braces. For example, display the
fifth element of A:

A{5}

ans =

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22

 10 12 19 21 3

 11 18 25 2 9

The assignment statement A{n} = magic(n) is more elegant and efficient than this
call to eval:

eval(['A', int2str(n),' = magic(n)']) % Not recommended

For more information, see:

• “Create a Cell Array” on page 11-3
• “Create a Structure Array” on page 10-2

Files with Sequential Names

Related data files often have a common root name with an integer index, such as
myfile1.mat through myfileN.mat. A common (but not recommended) use of the eval
function is to construct and pass each file name to a function using command syntax,
such as

eval(['save myfile',int2str(n),'.mat']) % Not recommended

The best practice is to use function syntax, which allows you to pass variables as inputs.
For example:

currentFile = 'myfile1.mat';

save(currentFile)

2 Program Components

2-68

You can construct file names within a loop using the sprintf function (which is usually
more efficient than int2str), and then call the save function without eval. This code
creates 10 files in the current folder:

numFiles = 10;

for n = 1:numFiles

 randomData = rand(n);

 currentFile = sprintf('myfile%d.mat',n);

 save(currentFile,'randomData')

end

For more information, see:

• “Command vs. Function Syntax” on page 1-12
• “Import or Export a Sequence of Files”

Function Names in Variables

A common use of eval is to execute a function when the name of the function is in a
variable string. There are two ways to evaluate functions from variables that are more
efficient than using eval:

• Create function handles with the @ symbol or with the str2func function. For
example, run a function from a list stored in a cell array:

examples = {@odedemo,@sunspots,@fitdemo};

n = input('Select an example (1, 2, or 3): ');

examples{n}()

• Use the feval function. For example, call a plot function (such as plot, bar, or pie)
with data that you specify at run time:

plotFunction = input('Specify a plotting function: ','s');

data = input('Enter data to plot: ');

feval(plotFunction,data)

Field Names in Variables

Access data in a structure with a variable field name by enclosing the expression for the
field in parentheses. For example:

myData.height = [67, 72, 58];

myData.weight = [140, 205, 90];

 Alternatives to the eval Function

2-69

fieldName = input('Select data (height or weight): ','s');

dataToUse = myData.(fieldName);

If you enter weight at the input prompt, then you can find the minimum weight value
with the following command.

min(dataToUse)

ans =

 90

For an additional example, see “Generate Field Names from Variables” on page
10-12.

Error Handling

The preferred method for error handling in MATLAB is to use a try, catch statement.
For example:

try

 B = A;

catch exception

 disp('A is undefined')

end

If your workspace does not contain variable A, then this code returns:

A is undefined

Previous versions of the documentation for the eval function include the syntax
eval(expression,catch_expr). If evaluating the expression input returns
an error, then eval evaluates catch_expr. However, an explicit try/catch is
significantly clearer than an implicit catch in an eval statement. Using the implicit
catch is not recommended.

2 Program Components

2-70

Symbol Reference

In this section...

“Asterisk — *” on page 2-70
“At — @” on page 2-71
“Colon — :” on page 2-72
“Comma — ,” on page 2-73
“Curly Braces — { }” on page 2-73
“Dot — .” on page 2-74
“Dot-Dot — ..” on page 2-74
“Dot-Dot-Dot (Ellipsis) — ...” on page 2-75
“Dot-Parentheses — .()” on page 2-76
“Exclamation Point — !” on page 2-76
“Parentheses — ()” on page 2-76
“Percent — %” on page 2-77
“Percent-Brace — %{ %}” on page 2-77
“Plus — +” on page 2-78
“Semicolon — ;” on page 2-78
“Single Quotes — ' '” on page 2-79
“Space Character” on page 2-79
“Slash and Backslash — / \” on page 2-80
“Square Brackets — []” on page 2-80
“Tilde — ~” on page 2-81

Asterisk — *

An asterisk in a filename specification is used as a wildcard specifier, as described below.

Filename Wildcard

Wildcards are generally used in file operations that act on multiple files or folders. They
usually appear in the string containing the file or folder specification. MATLAB matches

 Symbol Reference

2-71

all characters in the name exactly except for the wildcard character *, which can match
any one or more characters.

To locate all files with names that start with 'january_' and have a mat file extension,
use

dir('january_*.mat')

You can also use wildcards with the who and whos functions. To get information on all
variables with names starting with 'image' and ending with 'Offset', use

whos image*Offset

At — @

The @ sign signifies either a function handle constructor or a folder that supports a
MATLAB class.

Function Handle Constructor

The @ operator forms a handle to either the named function that follows the @ sign, or to
the anonymous function that follows the @ sign.

Function Handles in General

Function handles are commonly used in passing functions as arguments to other
functions. Construct a function handle by preceding the function name with an @ sign:

fhandle = @myfun

For more information, see “Create Function Handle” on page 12-2.

Handles to Anonymous Functions

Anonymous functions give you a quick means of creating simple functions without having
to create your function in a file each time. You can construct an anonymous function and
a handle to that function using the syntax

fhandle = @(arglist) body

where body defines the body of the function and arglist is the list of arguments you
can pass to the function.

See “Anonymous Functions” on page 19-23 for more information.

2 Program Components

2-72

Class Folder Designator

An @ sign can indicate the name of a class folder, such as

\@myclass\get.m

See the documentation on “Class and Path Folders” for more information.

Colon — :

The colon operator generates a sequence of numbers that you can use in creating or
indexing into arrays. See“Generating a Numeric Sequence” for more information on using
the colon operator.

Numeric Sequence Range

Generate a sequential series of regularly spaced numbers from first to last using the
syntax first:last. For an incremental sequence from 6 to 17, use

N = 6:17

Numeric Sequence Step

Generate a sequential series of numbers, each number separated by a step value, using
the syntax first:step:last. For a sequence from 2 through 38, stepping by 4 between
each entry, use

N = 2:4:38

Indexing Range Specifier

Index into multiple rows or columns of a matrix using the colon operator to specify a
range of indices:

B = A(7, 1:5); % Read columns 1-5 of row 7.

B = A(4:2:8, 1:5); % Read columns 1-5 of rows 4, 6, and 8.

B = A(:, 1:5); % Read columns 1-5 of all rows.

Conversion to Column Vector

Convert a matrix or array to a column vector using the colon operator as a single index:

A = rand(3,4);

B = A(:);

 Symbol Reference

2-73

Preserving Array Shape on Assignment

Using the colon operator on the left side of an assignment statement, you can assign new
values to array elements without changing the shape of the array:

A = rand(3,4);

A(:) = 1:12;

Comma — ,

A comma is used to separate the following types of elements.

Row Element Separator

When constructing an array, use a comma to separate elements that belong in the same
row:

A = [5.92, 8.13, 3.53]

Array Index Separator

When indexing into an array, use a comma to separate the indices into each dimension:

X = A(2, 7, 4)

Function Input and Output Separator

When calling a function, use a comma to separate output and input arguments:

function [data, text] = xlsread(file, sheet, range, mode)

Command or Statement Separator

To enter more than one MATLAB command or statement on the same line, separate each
command or statement with a comma:

for k = 1:10, sum(A(k)), end

Curly Braces — { }

Use curly braces to construct or get the contents of cell arrays.

Cell Array Constructor

To construct a cell array, enclose all elements of the array in curly braces:

2 Program Components

2-74

C = {[2.6 4.7 3.9], rand(8)*6, 'C. Coolidge'}

Cell Array Indexing

Index to a specific cell array element by enclosing all indices in curly braces:

A = C{4,7,2}

For more information, see “Cell Arrays”

Dot — .

The single dot operator has the following different uses in MATLAB.

Decimal Point

MATLAB uses a period to separate the integral and fractional parts of a number.

Structure Field Definition

Add fields to a MATLAB structure by following the structure name with a dot and then a
field name:

funds(5,2).bondtype = 'Corporate';

For more information, see “Structures”

Object Method Specifier

Specify the properties of an instance of a MATLAB class using the object name followed
by a dot, and then the property name:

val = asset.current_value

Dot-Dot — ..

Two dots in sequence refer to the parent of the current folder.

Parent Folder

Specify the folder immediately above your current folder using two dots. For example, to
go up two levels in the folder tree and down into the test folder, use

cd ..\..\test

 Symbol Reference

2-75

Dot-Dot-Dot (Ellipsis) — ...

A series of three consecutive periods (...) is the line continuation operator in MATLAB.
This is often referred to as an ellipsis, but it should be noted that the line continuation
operator is a three-character operator and is different from the single-character ellipsis
represented by the Unicode character U+2026.

Line Continuation

Continue any MATLAB command or expression by placing an ellipsis at the end of the
line to be continued:

sprintf('The current value of %s is %d', ...

 vname, value)

Entering Long Strings

You cannot use an ellipsis within single quotes to continue a string to the next line:

string = 'This is not allowed and will generate an ...

 error in MATLAB.'

To enter a string that extends beyond a single line, piece together shorter strings using
either the concatenation operator ([]) or the sprintf function.

Here are two examples:

quote1 = [

 'Tiger, tiger, burning bright in the forests of the night,' ...

 'what immortal hand or eye could frame thy fearful symmetry?'];

quote2 = sprintf('%s%s%s', ...

 'In Xanadu did Kubla Khan a stately pleasure-dome decree,', ...

 'where Alph, the sacred river, ran ', ...

 'through caverns measureless to man down to a sunless sea.');

Defining Arrays

MATLAB interprets the ellipsis as a space character. For statements that define arrays
or cell arrays within [] or {} operators, a space character separates array elements. For
example,

not_valid = [1 2 zeros...

(1,3)]

is equivalent to

2 Program Components

2-76

not_valid = [1 2 zeros (1,3)]

which returns an error. Place the ellipsis so that the interpreted statement is valid, such
as

valid = [1 2 ...

 zeros(1,3)]

Dot-Parentheses — .()

Use dot-parentheses to specify the name of a dynamic structure field.

Dynamic Structure Fields

Sometimes it is useful to reference structures with field names that can vary. For
example, the referenced field might be passed as an argument to a function. Dynamic
field names specify a variable name for a structure field.

The variable fundtype shown here is a dynamic field name:

type = funds(5,2).(fundtype);

See “Generate Field Names from Variables” on page 10-12 for more information.

Exclamation Point — !

The exclamation point precedes operating system commands that you want to execute
from within MATLAB.

Shell Escape

The exclamation point initiates a shell escape function. Such a function is to be
performed directly by the operating system:

!rmdir oldtests

For more information, see “Shell Escape Functions”.

Parentheses — ()

Parentheses are used mostly for indexing into elements of an array or for specifying
arguments passed to a called function. Parenthesis also control the order of operations,

 Symbol Reference

2-77

and can group a vector visually (such as x = (1:10)) without calling a concatenation
function.

Array Indexing

When parentheses appear to the right of a variable name, they are indices into the array
stored in that variable:

A(2, 7, 4)

Function Input Arguments

When parentheses follow a function name in a function declaration or call, the enclosed
list contains input arguments used by the function:

function sendmail(to, subject, message, attachments)

Percent — %

The percent sign is most commonly used to indicate nonexecutable text within the body
of a program. This text is normally used to include comments in your code. Two percent
signs, %%, serve as a cell delimiter described in “Run Code Sections” on page 17-6.
Some functions also interpret the percent sign as a conversion specifier.

Single Line Comments

Precede any one-line comments in your code with a percent sign. MATLAB does not
execute anything that follows a percent sign (that is, unless the sign is quoted, '%'):

% The purpose of this routine is to compute

% the value of ...

See “Add Comments to Programs” on page 17-4 for more information.

Conversion Specifiers

Some functions, like sscanf and sprintf, precede conversion specifiers with the
percent sign:

sprintf('%s = %d', name, value)

Percent-Brace — %{ %}

The %{ and %} symbols enclose a block of comments that extend beyond one line.

2 Program Components

2-78

Block Comments

Enclose any multiline comments with percent followed by an opening or closing brace.

%{

The purpose of this routine is to compute

the value of ...

%}

Note With the exception of whitespace characters, the %{ and %} operators must appear
alone on the lines that immediately precede and follow the block of help text. Do not
include any other text on these lines.

Plus — +

The + sign appears most frequently as an arithmetic operator, but is also used to
designate the names of package folders. For more information, see “Packages Create
Namespaces”.

Semicolon — ;

The semicolon can be used to construct arrays, suppress output from a MATLAB
command, or to separate commands entered on the same line.

Array Row Separator

When used within square brackets to create a new array or concatenate existing arrays,
the semicolon creates a new row in the array:

A = [5, 8; 3, 4]

A =

 5 8

 3 4

Output Suppression

When placed at the end of a command, the semicolon tells MATLAB not to display any
output from that command. In this example, MATLAB does not display the resulting
100-by-100 matrix:

A = ones(100, 100);

 Symbol Reference

2-79

Command or Statement Separator

Like the comma operator, you can enter more than one MATLAB command on a
line by separating each command with a semicolon. MATLAB suppresses output for
those commands terminated with a semicolon, and displays the output for commands
terminated with a comma.

In this example, assignments to variables A and C are terminated with a semicolon, and
thus do not display. Because the assignment to B is comma-terminated, the output of this
one command is displayed:

A = 12.5; B = 42.7, C = 1.25;

B =

 42.7000

Single Quotes — ' '

Single quotes are the constructor symbol for MATLAB character arrays.

Character and String Constructor

MATLAB constructs a character array from all characters enclosed in single quotes. If
only one character is in quotes, then MATLAB constructs a 1-by-1 array:

S = 'Hello World'

For more information, see “Characters and Strings”

Space Character

The space character serves a purpose similar to the comma in that it can be used to
separate row elements in an array constructor, or the values returned by a function.

Row Element Separator

You have the option of using either commas or spaces to delimit the row elements of an
array when constructing the array. To create a 1-by-3 array, use

A = [5.92 8.13 3.53]

A =

 5.9200 8.1300 3.5300

2 Program Components

2-80

When indexing into an array, you must always use commas to reference each dimension
of the array.

Function Output Separator

Spaces are allowed when specifying a list of values to be returned by a function. You can
use spaces to separate return values in both function declarations and function calls:

function [data text] = xlsread(file, sheet, range, mode)

Slash and Backslash — / \

The slash (/) and backslash (\) characters separate the elements of a path or folder
string. On Microsoft Windows-based systems, both slash and backslash have the same
effect. On The Open Group UNIX-based systems, you must use slash only.

On a Windows system, you can use either backslash or slash:

dir([matlabroot '\toolbox\matlab\elmat\shiftdim.m'])

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

On a UNIX system, use only the forward slash:

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

Square Brackets — []

Square brackets are used in array construction and concatenation, and also in declaring
and capturing values returned by a function.

Array Constructor

To construct a matrix or array, enclose all elements of the array in square brackets:

A = [5.7, 9.8, 7.3; 9.2, 4.5, 6.4]

Concatenation

To combine two or more arrays into a new array through concatenation, enclose all array
elements in square brackets:

A = [B, eye(6), diag([0:2:10])]

 Symbol Reference

2-81

Function Declarations and Calls

When declaring or calling a function that returns more than one output, enclose each
return value that you need in square brackets:

[data, text] = xlsread(file, sheet, range, mode)

Tilde — ~

The tilde character is used in comparing arrays for unequal values, finding the logical
NOT of an array, and as a placeholder for an input or output argument you want to omit
from a function call.

Not Equal to

To test for inequality values of elements in arrays a and b for inequality, use a~=b:

a = primes(29); b = [2 4 6 7 11 13 20 22 23 29];

not_prime = b(a~=b)

not_prime =

 4 6 20 22

Logical NOT

To find those elements of an array that are zero, use:

 a = [35 42 0 18 0 0 0 16 34 0];

~a

ans =

 0 0 1 0 1 1 1 0 0 1

Argument Placeholder

To have the fileparts function return its third output value and skip the first two,
replace arguments one and two with a tilde character:

[~, ~, filenameExt] = fileparts(fileSpec);

See “Ignore Function Inputs” on page 20-13 in the MATLAB Programming
documentation for more information.

Classes (Data Types)

3

Overview of MATLAB Classes

3 Overview of MATLAB Classes

3-2

Fundamental MATLAB Classes

There are many different data types, or classes, that you can work with in the MATLAB
software. You can build matrices and arrays of floating-point and integer data,
characters and strings, and logical true and false states. Function handles connect
your code with any MATLAB function regardless of the current scope. Tables, structures,
and cell arrays provide a way to store dissimilar types of data in the same container.

There are 16 fundamental classes in MATLAB. Each of these classes is in the form
of a matrix or array. With the exception of function handles, this matrix or array is a
minimum of 0-by-0 in size and can grow to an n-dimensional array of any size. A function
handle is always scalar (1-by-1).

All of the fundamental MATLAB classes are shown in the diagram below:

Numeric classes in the MATLAB software include signed and unsigned integers, and
single- and double-precision floating-point numbers. By default, MATLAB stores all
numeric values as double-precision floating point. (You cannot change the default type
and precision.) You can choose to store any number, or array of numbers, as integers
or as single-precision. Integer and single-precision arrays offer more memory-efficient
storage than double-precision.

All numeric types support basic array operations, such as subscripting, reshaping, and
mathematical operations.

 Fundamental MATLAB Classes

3-3

You can create two-dimensional double and logical matrices using one of two storage
formats: full or sparse. For matrices with mostly zero-valued elements, a sparse
matrix requires a fraction of the storage space required for an equivalent full matrix.
Sparse matrices invoke methods especially tailored to solve sparse problems

These classes require different amounts of storage, the smallest being a logical value
or 8-bit integer which requires only 1 byte. It is important to keep this minimum size in
mind if you work on data in files that were written using a precision smaller than 8 bits.

The following table describes the fundamental classes in more detail.

Class Name Documentation Intended Use

double, single Floating-Point
Numbers

• Required for fractional numeric data.
• Double and Single precision.
• Use realmin and realmax to show range of values.
• Two-dimensional arrays can be sparse.
• Default numeric type in MATLAB.

int8, uint8,
int16, uint16,
int32, uint32,
int64, uint64

Integers • Use for signed and unsigned whole numbers.
• More efficient use of memory.
• Use intmin and intmax to show range of values.
• Choose from 4 sizes (8, 16, 32, and 64 bits).

char “Characters and
Strings”

• Data type for text.
• Native or Unicode®.
• Converts to/from numeric.
• Use with regular expressions.
• For multiple strings, use cell arrays.

logical “Logical
Operations”

• Use in relational conditions or to test state.
• Can have one of two values: true or false.
• Also useful in array indexing.
• Two-dimensional arrays can be sparse.

function_handle“Function Handles” • Pointer to a function.
• Enables passing a function to another function
• Can also call functions outside usual scope.

3 Overview of MATLAB Classes

3-4

Class Name Documentation Intended Use

• Useful in Handle Graphics callbacks.
• Save to MAT-file and restore later.

table “Tables” • Rectangular container for mixed-type, column-oriented
data.

• Row and variable names identify contents.
• Use Table Properties to store metadata such as

variable units.
• Manipulation of elements similar to numeric or logical

arrays.
• Access data by numeric or named index.
• Can select a subset of data and preserve the table

container or can extract the data from a table.
struct “Structures” • Fields store arrays of varying classes and sizes.

• Access one or all fields/indices in single operation.
• Field names identify contents.
• Method of passing function arguments.
• Use in comma-separated lists.
• More memory required for overhead

cell “Cell Arrays” • Cells store arrays of varying classes and sizes.
• Allows freedom to package data as you want.
• Manipulation of elements is similar to numeric or logical

arrays.
• Method of passing function arguments.
• Use in comma-separated lists.
• More memory required for overhead

More About
• “Valid Combinations of Unlike Classes” on page 14-2

4

Numeric Classes

• “Integers” on page 4-2
• “Floating-Point Numbers” on page 4-6
• “Complex Numbers” on page 4-16
• “Infinity and NaN” on page 4-18
• “Identifying Numeric Classes” on page 4-21
• “Display Format for Numeric Values” on page 4-22
• “Function Summary” on page 4-25

4 Numeric Classes

4-2

Integers

In this section...

“Integer Classes” on page 4-2
“Creating Integer Data” on page 4-3
“Arithmetic Operations on Integer Classes” on page 4-4
“Largest and Smallest Values for Integer Classes” on page 4-5
“Integer Functions” on page 4-5

Integer Classes

MATLAB has four signed and four unsigned integer classes. Signed types enable you to
work with negative integers as well as positive, but cannot represent as wide a range
of numbers as the unsigned types because one bit is used to designate a positive or
negative sign for the number. Unsigned types give you a wider range of numbers, but
these numbers can only be zero or positive.

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can save memory
and execution time for your programs if you use the smallest integer type that
accommodates your data. For example, you do not need a 32-bit integer to store the value
100.

Here are the eight integer classes, the range of values you can store with each type, and
the MATLAB conversion function required to create that type:

Class Range of Values Conversion Function

Signed 8-bit integer -27 to 27-1 int8

Signed 16-bit integer -215 to 215-1 int16

Signed 32-bit integer -231 to 231-1 int32

Signed 64-bit integer -263 to 263-1 int64

Unsigned 8-bit integer 0 to 28-1 uint8

Unsigned 16-bit integer 0 to 216-1 uint16

Unsigned 32-bit integer 0 to 232-1 uint32

 Integers

4-3

Class Range of Values Conversion Function

Unsigned 64-bit integer 0 to 264-1 uint64

Creating Integer Data

MATLAB stores numeric data as double-precision floating point (double) by default. To
store data as an integer, you need to convert from double to the desired integer type.
Use one of the conversion functions shown in the table above.

For example, to store 325 as a 16-bit signed integer assigned to variable x, type

x = int16(325);

If the number being converted to an integer has a fractional part, MATLAB rounds to the
nearest integer. If the fractional part is exactly 0.5, then from the two equally nearby
integers, MATLAB chooses the one for which the absolute value is larger in magnitude:

x = 325.499; x = x + .001;

int16(x) int16(x)

ans = ans =

 325 326

If you need to round a number using a rounding scheme other than the default, MATLAB
provides four rounding functions: round, fix, floor, and ceil. The fix function
enables you to override the default and round towards zero when there is a nonzero
fractional part:

x = 325.9;

int16(fix(x))

ans =

 325

Arithmetic operations that involve both integers and floating-point always result in
an integer data type. MATLAB rounds the result, when necessary, according to the
default rounding algorithm. The example below yields an exact answer of 1426.75 which
MATLAB then rounds to the next highest integer:

int16(325) * 4.39

ans =

 1427

4 Numeric Classes

4-4

The integer conversion functions are also useful when converting other classes, such as
strings, to integers:

str = 'Hello World';

int8(str)

ans =

 72 101 108 108 111 32 87 111 114 108 100

If you convert a NaN value into an integer class, the result is a value of 0 in that integer
class. For example,

int32(NaN)

ans =

 0

Arithmetic Operations on Integer Classes

MATLAB can perform integer arithmetic on the following types of data:

• Integers or integer arrays of the same integer data type. This yields a result that has
the same data type as the operands:

x = uint32([132 347 528]) .* uint32(75);

class(x)

ans =

 uint32

• Integers or integer arrays and scalar double-precision floating-point numbers. This
yields a result that has the same data type as the integer operands:

x = uint32([132 347 528]) .* 75.49;

class(x)

ans =

 uint32

For all binary operations in which one operand is an array of integer data type (except
64-bit integers) and the other is a scalar double, MATLAB computes the operation
using elementwise double-precision arithmetic, and then converts the result back to
the original integer data type. For binary operations involving a 64-bit integer array
and a scalar double, MATLAB computes the operation as if 80-bit extended-precision
arithmetic were used, to prevent loss of precision.

 Integers

4-5

Largest and Smallest Values for Integer Classes

For each integer data type, there is a largest and smallest number that you can represent
with that type. The table shown under “Integers” on page 4-2 lists the largest and
smallest values for each integer data type in the “Range of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax('int8') intmin('int8')

ans = ans =

 127 -128

If you convert a number that is larger than the maximum value of an integer data type
to that type, MATLAB sets it to the maximum value. Similarly, if you convert a number
that is smaller than the minimum value of the integer data type, MATLAB sets it to the
minimum value. For example,

x = int8(300) x = int8(-300)

x = x =

 127 -128

Also, when the result of an arithmetic operation involving integers exceeds the maximum
(or minimum) value of the data type, MATLAB sets it to the maximum (or minimum)
value:

x = int8(100) * 3 x = int8(-100) * 3

x = x =

 127 -128

Integer Functions

See Integer Functions for a list of functions most commonly used with integers in
MATLAB.

4 Numeric Classes

4-6

Floating-Point Numbers

In this section...

“Double-Precision Floating Point” on page 4-6
“Single-Precision Floating Point” on page 4-6
“Creating Floating-Point Data” on page 4-7
“Arithmetic Operations on Floating-Point Numbers” on page 4-8
“Largest and Smallest Values for Floating-Point Classes” on page 4-9
“Accuracy of Floating-Point Data” on page 4-11
“Avoiding Common Problems with Floating-Point Arithmetic” on page 4-12
“Floating-Point Functions” on page 4-14
“References” on page 4-14

MATLAB represents floating-point numbers in either double-precision or single-precision
format. The default is double precision, but you can make any number single precision
with a simple conversion function.

Double-Precision Floating Point

MATLAB constructs the double-precision (or double) data type according to IEEE®

Standard 754 for double precision. Any value stored as a double requires 64 bits,
formatted as shown in the table below:

Bits Usage

63 Sign (0 = positive, 1 = negative)
62 to 52 Exponent, biased by 1023
51 to 0 Fraction f of the number 1.f

Single-Precision Floating Point

MATLAB constructs the single-precision (or single) data type according to IEEE
Standard 754 for single precision. Any value stored as a single requires 32 bits,
formatted as shown in the table below:

 Floating-Point Numbers

4-7

Bits Usage

31 Sign (0 = positive, 1 = negative)
30 to 23 Exponent, biased by 127
22 to 0 Fraction f of the number 1.f

Because MATLAB stores numbers of type single using 32 bits, they require less
memory than numbers of type double, which use 64 bits. However, because they are
stored with fewer bits, numbers of type single are represented to less precision than
numbers of type double.

Creating Floating-Point Data

Use double-precision to store values greater than approximately 3.4 x 1038 or less than
approximately -3.4 x 1038. For numbers that lie between these two limits, you can use
either double- or single-precision, but single requires less memory.

Creating Double-Precision Data

Because the default numeric type for MATLAB is double, you can create a double with
a simple assignment statement:

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type double for
the value you just stored in x:

whos x

 Name Size Bytes Class

 x 1x1 8 double

Use isfloat if you just want to verify that x is a floating-point number. This function
returns logical 1 (true) if the input is a floating-point number, and logical 0 (false)
otherwise:

isfloat(x)

ans =

 1

You can convert other numeric data, characters or strings, and logical data to double
precision using the MATLAB function, double. This example converts a signed integer
to double-precision floating point:

4 Numeric Classes

4-8

y = int64(-589324077574); % Create a 64-bit integer

x = double(y) % Convert to double

x =

 -5.8932e+11

Creating Single-Precision Data

Because MATLAB stores numeric data as a double by default, you need to use the
single conversion function to create a single-precision number:

x = single(25.783);

The whos function returns the attributes of variable x in a structure. The bytes field of
this structure shows that when x is stored as a single, it requires just 4 bytes compared
with the 8 bytes to store it as a double:

xAttrib = whos('x');

xAttrib.bytes

ans =

 4

You can convert other numeric data, characters or strings, and logical data to single
precision using the single function. This example converts a signed integer to single-
precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = single(y) % Convert to single

x =

 -5.8932e+11

Arithmetic Operations on Floating-Point Numbers

This section describes which classes you can use in arithmetic operations with floating-
point numbers.

Double-Precision Operations

You can perform basic arithmetic operations with double and any of the following other
classes. When one or more operands is an integer (scalar or array), the double operand
must be a scalar. The result is of type double, except where noted otherwise:

• single — The result is of type single

 Floating-Point Numbers

4-9

• double

• int* or uint* — The result has the same data type as the integer operand
• char

• logical

This example performs arithmetic on data of types char and double. The result is of
type double:

c = 'uppercase' - 32;

class(c)

ans =

 double

char(c)

ans =

 UPPERCASE

Single-Precision Operations

You can perform basic arithmetic operations with single and any of the following other
classes. The result is always single:

• single

• double

• char

• logical

In this example, 7.5 defaults to type double, and the result is of type single:

x = single([1.32 3.47 5.28]) .* 7.5;

class(x)

ans =

 single

Largest and Smallest Values for Floating-Point Classes

For the double and single classes, there is a largest and smallest number that you can
represent with that type.

4 Numeric Classes

4-10

Largest and Smallest Double-Precision Values

The MATLAB functions realmax and realmin return the maximum and minimum
values that you can represent with the double data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';

sprintf(str, -realmax, -realmin, realmin, realmax)

ans =

The range for double is:

 -1.79769e+308 to -2.22507e-308 and

 2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the values of
positive and negative infinity, respectively:

realmax + .0001e+308

ans =

 Inf

-realmax - .0001e+308

ans =

 -Inf

Largest and Smallest Single-Precision Values

The MATLAB functions realmax and realmin, when called with the argument
'single', return the maximum and minimum values that you can represent with the
single data type:

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';

sprintf(str, -realmax('single'), -realmin('single'), ...

 realmin('single'), realmax('single'))

ans =

The range for single is:

 -3.40282e+38 to -1.17549e-38 and

 1.17549e-38 to 3.40282e+38

Numbers larger than realmax('single') or smaller than -realmax('single') are
assigned the values of positive and negative infinity, respectively:

realmax('single') + .0001e+038

ans =

 Floating-Point Numbers

4-11

 Inf

-realmax('single') - .0001e+038

ans =

 -Inf

Accuracy of Floating-Point Data

If the result of a floating-point arithmetic computation is not as precise as you had
expected, it is likely caused by the limitations of your computer's hardware. Probably,
your result was a little less exact because the hardware had insufficient bits to represent
the result with perfect accuracy; therefore, it truncated the resulting value.

Double-Precision Accuracy

Because there are only a finite number of double-precision numbers, you cannot
represent all numbers in double-precision storage. On any computer, there is a small gap
between each double-precision number and the next larger double-precision number. You
can determine the size of this gap, which limits the precision of your results, using the
eps function. For example, to find the distance between 5 and the next larger double-
precision number, enter

format long

eps(5)

ans =

 8.881784197001252e-16

This tells you that there are no double-precision numbers between 5 and 5 + eps(5).
If a double-precision computation returns the answer 5, the result is only accurate to
within eps(5).

The value of eps(x) depends on x. This example shows that, as x gets larger, so does
eps(x):

eps(50)

ans =

 7.105427357601002e-15

If you enter eps with no input argument, MATLAB returns the value of eps(1), the
distance from 1 to the next larger double-precision number.

4 Numeric Classes

4-12

Single-Precision Accuracy

Similarly, there are gaps between any two single-precision numbers. If x has type
single, eps(x) returns the distance between x and the next larger single-precision
number. For example,

x = single(5);

eps(x)

returns

ans =

 4.7684e-07

Note that this result is larger than eps(5). Because there are fewer single-precision
numbers than double-precision numbers, the gaps between the single-precision numbers
are larger than the gaps between double-precision numbers. This means that results in
single-precision arithmetic are less precise than in double-precision arithmetic.

For a number x of type double, eps(single(x)) gives you an upper bound for the
amount that x is rounded when you convert it from double to single. For example,
when you convert the double-precision number 3.14 to single, it is rounded by

double(single(3.14) - 3.14)

ans =

 1.0490e-07

The amount that 3.14 is rounded is less than

eps(single(3.14))

ans =

 2.3842e-07

Avoiding Common Problems with Floating-Point Arithmetic

Almost all operations in MATLAB are performed in double-precision arithmetic
conforming to the IEEE standard 754. Because computers only represent numbers to
a finite precision (double precision calls for 52 mantissa bits), computations sometimes
yield mathematically nonintuitive results. It is important to note that these results are
not bugs in MATLAB.

Use the following examples to help you identify these cases:

 Floating-Point Numbers

4-13

Example 1 — Round-Off or What You Get Is Not What You Expect

The decimal number 4/3 is not exactly representable as a binary fraction. For this
reason, the following calculation does not give zero, but rather reveals the quantity eps.

e = 1 - 3*(4/3 - 1)

e =

 2.2204e-16

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get the
following nonintuitive behavior:

a = 0.0;

for i = 1:10

 a = a + 0.1;

end

a == 1

ans =

 0

Note that the order of operations can matter in the computation:

b = 1e-16 + 1 - 1e-16;

c = 1e-16 - 1e-16 + 1;

b == c

ans =

 0

There are gaps between floating-point numbers. As the numbers get larger, so do the
gaps, as evidenced by:

(2^53 + 1) - 2^53

ans =

 0

Since pi is not really π, it is not surprising that sin(pi) is not exactly zero:

sin(pi)

ans =

4 Numeric Classes

4-14

 1.224646799147353e-16

Example 2 — Catastrophic Cancellation

When subtractions are performed with nearly equal operands, sometimes cancellation
can occur unexpectedly. The following is an example of a cancellation caused by
swamping (loss of precision that makes the addition insignificant).

sqrt(1e-16 + 1) - 1

ans =

 0

Some functions in MATLAB, such as expm1 and log1p, may be used to compensate for
the effects of catastrophic cancellation.

Example 3 — Floating-Point Operations and Linear Algebra

Round-off, cancellation, and other traits of floating-point arithmetic combine to produce
startling computations when solving the problems of linear algebra. MATLAB warns
that the following matrix A is ill-conditioned, and therefore the system Ax = b may be
sensitive to small perturbations:

A = diag([2 eps]);

b = [2; eps];

y = A\b;

Warning: Matrix is close to singular or badly scaled.

 Results may be inaccurate. RCOND = 1.110223e-16.

These are only a few of the examples showing how IEEE floating-point arithmetic affects
computations in MATLAB. Note that all computations performed in IEEE 754 arithmetic
are affected, this includes applications written in C or FORTRAN, as well as MATLAB.

Floating-Point Functions

See Floating-Point Functions for a list of functions most commonly used with floating-
point numbers in MATLAB.

References

The following references provide more information about floating-point arithmetic.

 Floating-Point Numbers

4-15

References

[1] Moler, Cleve, “Floating Points,” MATLAB News and Notes, Fall, 1996. A PDF version
is available on the MathWorks Web site at http://www.mathworks.com/company/
newsletters/news_notes/pdf/Fall96Cleve.pdf

[2] Moler, Cleve, Numerical Computing with MATLAB, S.I.A.M. A PDF version is
available on the MathWorks Web site at http://www.mathworks.com/moler/.

4 Numeric Classes

4-16

Complex Numbers

In this section...

“Creating Complex Numbers” on page 4-16
“Complex Number Functions” on page 4-17

Creating Complex Numbers

Complex numbers consist of two separate parts: a real part and an imaginary part. The
basic imaginary unit is equal to the square root of -1. This is represented in MATLAB by
either of two letters: i or j.

The following statement shows one way of creating a complex value in MATLAB. The
variable x is assigned a complex number with a real part of 2 and an imaginary part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This function
combines two numeric inputs into a complex output, making the first input real and the
second imaginary:

x = rand(3) * 5;

y = rand(3) * -8;

z = complex(x, y)

z =

 4.7842 -1.0921i 0.8648 -1.5931i 1.2616 -2.2753i

 2.6130 -0.0941i 4.8987 -2.3898i 4.3787 -3.7538i

 4.4007 -7.1512i 1.3572 -5.2915i 3.6865 -0.5182i

You can separate a complex number into its real and imaginary parts using the real and
imag functions:

zr = real(z)

zr =

 4.7842 0.8648 1.2616

 2.6130 4.8987 4.3787

 4.4007 1.3572 3.6865

zi = imag(z)

zi =

 Complex Numbers

4-17

 -1.0921 -1.5931 -2.2753

 -0.0941 -2.3898 -3.7538

 -7.1512 -5.2915 -0.5182

Complex Number Functions

See Complex Number Functions for a list of functions most commonly used with
MATLAB complex numbers in MATLAB.

4 Numeric Classes

4-18

Infinity and NaN

In this section...

“Infinity” on page 4-18
“NaN” on page 4-18
“Infinity and NaN Functions” on page 4-20

Infinity

MATLAB represents infinity by the special value inf. Infinity results from operations
like division by zero and overflow, which lead to results too large to represent as
conventional floating-point values. MATLAB also provides a function called inf that
returns the IEEE arithmetic representation for positive infinity as a double scalar
value.

Several examples of statements that return positive or negative infinity in MATLAB are
shown here.

x = 1/0

x =

Inf

x = 1.e1000

x =

 Inf

x = exp(1000)

x =

 Inf

x = log(0)

x =

 -Inf

Use the isinf function to verify that x is positive or negative infinity:

x = log(0);

isinf(x)

ans =

 1

NaN

MATLAB represents values that are not real or complex numbers with a special value
called NaN, which stands for “Not a Number”. Expressions like 0/0 and inf/inf result
in NaN, as do any arithmetic operations involving a NaN:

 Infinity and NaN

4-19

x = 0/0

x =

 NaN

You can also create NaNs by:

x = NaN;

whos x

 Name Size Bytes Class

 x 1x1 8 double

The NaN function returns one of the IEEE arithmetic representations for NaN as a
double scalar value. The exact bit-wise hexadecimal representation of this NaN value is,

format hex

x = NaN

x =

 fff8000000000000

Always use the isnan function to verify that the elements in an array are NaN:

isnan(x)

ans =

 1

MATLAB preserves the “Not a Number” status of alternate NaN representations and
treats all of the different representations of NaN equivalently. However, in some special
cases (perhaps due to hardware limitations), MATLAB does not preserve the exact bit
pattern of alternate NaN representations throughout an entire calculation, and instead
uses the canonical NaN bit pattern defined above.

Logical Operations on NaN

Because two NaNs are not equal to each other, logical operations involving NaN always
return false, except for a test for inequality, (NaN ~= NaN):

NaN > NaN

ans =

4 Numeric Classes

4-20

 0

NaN ~= NaN

ans =

 1

Infinity and NaN Functions

See Infinity and NaN Functions for a list of functions most commonly used with inf and
NaN in MATLAB.

 Identifying Numeric Classes

4-21

Identifying Numeric Classes

You can check the data type of a variable x using any of these commands.

Command Operation

whos x Display the data type of x.
xType = class(x); Assign the data type of x to a variable.
isnumeric(x) Determine if x is a numeric type.
isa(x, 'integer')

isa(x, 'uint64')

isa(x, 'float')

isa(x, 'double')

isa(x, 'single')

Determine if x is the specified numeric type. (Examples
for any integer, unsigned 64-bit integer, any floating point,
double precision, and single precision are shown here).

isreal(x) Determine if x is real or complex.
isnan(x) Determine if x is Not a Number (NaN).
isinf(x) Determine if x is infinite.
isfinite(x) Determine if x is finite.

4 Numeric Classes

4-22

Display Format for Numeric Values

In this section...

“Default Display” on page 4-22
“Display Format Examples” on page 4-22
“Setting Numeric Format in a Program” on page 4-23

Default Display

By default, MATLAB displays numeric output as 5-digit scaled, fixed-point values. You
can change the way numeric values are displayed to any of the following:

• 5-digit scaled fixed point, floating point, or the best of the two
• 15-digit scaled fixed point, floating point, or the best of the two
• A ratio of small integers
• Hexadecimal (base 16)
• Bank notation

All available formats are listed on the format reference page.

To change the numeric display setting, use either the format function or the
Preferences dialog box (accessible from the MATLAB File menu). The format function
changes the display of numeric values for the duration of a single MATLAB session,
while your Preferences settings remain active from one session to the next. These
settings affect only how numbers are displayed, not how MATLAB computes or saves
them.

Display Format Examples

Here are a few examples of the various formats and the output produced from the
following two-element vector x, with components of different magnitudes.

Check the current format setting:

get(0, 'format')

ans =

 short

 Display Format for Numeric Values

4-23

Set the value for x and display in 5-digit scaled fixed point:

x = [4/3 1.2345e-6]

x =

 1.3333 0.0000

Set the format to 5-digit floating point:

format short e

x

x =

 1.3333e+00 1.2345e-06

Set the format to 15-digit scaled fixed point:

format long

x

x =

 1.333333333333333 0.000001234500000

Set the format to 'rational' for small integer ratio output:

format rational

x

x =

 4/3 1/810045

Set an integer value for x and display it in hexadecimal (base 16) format:

format hex

x = uint32(876543210)

x =

 343efcea

Setting Numeric Format in a Program

To temporarily change the numeric format inside a program, get the original format
using the get function and save it in a variable. When you finish working with the new
format, you can restore the original format setting using the set function as shown here:

origFormat = get(0, 'format');

format('rational');

 -- Work in rational format --

4 Numeric Classes

4-24

set(0,'format', origFormat);

 Function Summary

4-25

Function Summary

MATLAB provides these functions for working with numeric classes:

• Integer Functions
• Floating-Point Functions
• Complex Number Functions
• Infinity and NaN Functions
• Class Identification Functions
• Output Formatting Functions

Integer Functions

Function Description

int8, int16, int32,
int64

Convert to signed 1-, 2-, 4-, or 8-byte integer.

uint8, uint16,
uint32, uint64

Convert to unsigned 1-, 2-, 4-, or 8-byte integer.

ceil Round towards plus infinity to nearest integer
class Return the data type of an object.
fix Round towards zero to nearest integer
floor Round towards minus infinity to nearest integer
isa Determine if input value has the specified data type.
isinteger Determine if input value is an integer array.
isnumeric Determine if input value is a numeric array.
round Round towards the nearest integer

Floating-Point Functions

Function Description

double Convert to double precision.
single Convert to single precision.
class Return the data type of an object.
isa Determine if input value has the specified data type.

4 Numeric Classes

4-26

Function Description

isfloat Determine if input value is a floating-point array.
isnumeric Determine if input value is a numeric array.
eps Return the floating-point relative accuracy. This value is the

tolerance MATLAB uses in its calculations.
realmax Return the largest floating-point number your computer can

represent.
realmin Return the smallest floating-point number your computer can

represent.

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary components.
i or j Return the imaginary unit used in constructing complex data.
real Return the real part of a complex number.
imag Return the imaginary part of a complex number.
isreal Determine if a number is real or imaginary.

Infinity and NaN Functions

Function Description

inf Return the IEEE value for infinity.
isnan Detect NaN elements of an array.
isinf Detect infinite elements of an array.
isfinite Detect finite elements of an array.
nan Return the IEEE value for Not a Number.

Class Identification Functions

Function Description

class Return data type (or class).
isa Determine if input value is of the specified data type.
isfloat Determine if input value is a floating-point array.

 Function Summary

4-27

Function Description

isinteger Determine if input value is an integer array.
isnumeric Determine if input value is a numeric array.
isreal Determine if input value is real.
whos Display the data type of input.

Output Formatting Functions

Function Description

format Control display format for output.

5

The Logical Class

• “Find Array Elements That Meet a Condition” on page 5-2
• “Determine if Arrays Are Logical” on page 5-7
• “Reduce Logical Arrays to Single Value” on page 5-10
• “Truth Table for Logical Operations” on page 5-13

5 The Logical Class

5-2

Find Array Elements That Meet a Condition

You can filter the elements of an array by applying one or more conditions to the array.
For instance, if you want to examine only the even elements in a matrix, find the location
of all 0s in a multidimensional array, or replace NaN values in a discrete set of data. You
can perform these tasks using a combination of the relational and logical operators. The
relational operators (>, <, >=, <=, ==, ~=) impose conditions on the array, and you
can apply multiple conditions by connecting them with the logical operators and, or, and
not, respectively denoted by &, |, and ~.

In this section...

“Apply a Single Condition” on page 5-2
“Apply Multiple Conditions” on page 5-4
“Replace Values that Meet a Condition” on page 5-5

Apply a Single Condition

To apply a single condition, start by creating a 5-by-5 matrix, A, that contains random
integers between 1 and 15.

rng(0)

A = randi(15,5)

A =

 13 2 3 3 10

 14 5 15 7 1

 2 9 15 14 13

 14 15 8 12 15

 10 15 13 15 11

Use the relational less than operator, <, to determine which elements of A are less than 9.
Store the result in B.

B = A < 9

B =

 0 1 1 1 0

 0 1 0 1 1

 1 0 0 0 0

 Find Array Elements That Meet a Condition

5-3

 0 0 1 0 0

 0 0 0 0 0

The result is a logical matrix. Each value in B represents a logical 1 (true) or logical 0
(false) state to indicate whether the corresponding element of A fulfills the condition A
< 9. For example, A(1,1) is 13, so B(1,1) is logical 0 (false). However, A(1,2) is 2,
so B(1,2) is logical 1 (true).

Although B contains information about which elements in A are less than 9, it doesn’t tell
you what their values are. Rather than comparing the two matrices element by element,
use B to index into A.

A(B)

ans =

 2

 2

 5

 3

 8

 3

 7

 1

The result is a column vector of the elements in A that are less than 9. Since B is a logical
matrix, this operation is called logical indexing. In this case, the logical array being used
as an index is the same size as the other array, but this is not a requirement. For more
information, see “Using Logicals in Array Indexing”.

Some problems require information about the locations of the array elements that meet
a condition rather than their actual values. In this example, use the find function to
locate all of the elements in A less than 9.

I = find(A < 9)

I =

 3

 6

 7

 11

 14

 16

5 The Logical Class

5-4

 17

 22

The result is a column vector of linear indices. Each index describes the location of an
element in A that is less than 9, so in practice A(I) returns the same result as A(B). The
difference is that A(B) uses logical indexing, whereas A(I) uses linear indexing.

Apply Multiple Conditions

You can use the logical and, or, and not operators to apply any number of conditions to
an array; the number of conditions is not limited to one or two.

First, use the logical and operator, denoted &, to specify two conditions: the elements
must be less than 9 AND greater than 2. Specify the conditions as a logical index to view
the elements that satisfy both conditions.

A(A<9 & A>2)

ans =

 5

 3

 8

 3

 7

The result is a list of the elements in A that satisfy both conditions. Be sure to specify
each condition with a separate statement connected by a logical operator. For example,
you cannot specify the conditions above by A(2<A<9), since it evaluates to A(2<A |
A<9).

Next, find the elements in A that are less than 9 AND even numbered.

A(A<9 & ~mod(A,2))

ans =

 2

 2

 8

The result is a list of all even elements in A that are less than 9. The use of the logical
NOT operator, ~, converts the matrix mod(A,2) into a logical matrix, with a value of
logical 1 (true) located where an element is evenly divisible by 2.

 Find Array Elements That Meet a Condition

5-5

Finally, find the elements in A that are less than 9 AND even numbered AND not equal
to 2.

A(A<9 & ~mod(A,2) & A~=2)

ans =

 8

The result, 8, is even, less than 9, and not equal to 2. It is the only element in A that
satisfies all three conditions.

Use the find function to get the index of the 8 element that satisfies the conditions.

find(A<9 & ~mod(A,2) & A~=2)

ans =

 14

The result indicates that A(14) = 8.

Replace Values that Meet a Condition

Sometimes it is useful to simultaneously change the values of several existing array
elements. Use logical indexing with a simple assignment statement to replace the values
in an array that meet a condition.

Replace all values in A that are greater than 10 with the number 10.

A(A>10) = 10

A =

 10 2 3 3 10

 10 5 10 7 1

 2 9 10 10 10

 10 10 8 10 10

 10 10 10 10 10

A now has a maximum value of 10.

Replace all values in A that are not equal to 10 with a NaN value.

5 The Logical Class

5-6

A(A~=10) = NaN

A =

 10 NaN NaN NaN 10

 10 NaN 10 NaN NaN

 NaN NaN 10 10 10

 10 10 NaN 10 10

 10 10 10 10 10

The resulting matrix has element values of 10 or NaN.

Replace all of the NaN values in A with zeros and apply the logical NOT operator, ~A.

A(isnan(A)) = 0;

C = ~A

C =

 0 1 1 1 0

 0 1 0 1 1

 1 1 0 0 0

 0 0 1 0 0

 0 0 0 0 0

The resulting matrix has values of logical 1 (true) in place of the NaN values, and logical
0 (false) in place of the 10s. The logical NOT operation, ~A, converts the numeric array
into a logical array such that A&C returns a matrix of logical 0 (false) values and A|C
returns a matrix of logical 1 (true) values.

See Also
and | find | isnan | Logical Operators: Short Circuit | nan | not | or | xor

 Determine if Arrays Are Logical

5-7

Determine if Arrays Are Logical

To determine whether an array is logical, you can test the entire array or each element
individually. This is useful when you want to confirm the output data type of a function.

This page shows several ways to determine if an array is logical.

In this section...

“Identify Logical Matrix” on page 5-7
“Test an Entire Array” on page 5-7
“Test Each Array Element” on page 5-8
“Summary Table” on page 5-9

Identify Logical Matrix

Create a 3-by-6 matrix and locate all elements greater than 0.5.

A = gallery('uniformdata',[3,6],0) > 0.5

A =

 1 0 0 0 1 0

 0 1 0 1 1 1

 1 1 1 1 0 1

The result, A, is a 3-by-6 logical matrix.

Use the whos function to confirm the size, byte count, and class (or data type) of the
matrix, A.

whos A

Name Size Bytes Class Attributes

 A 3x6 18 logical

The result confirms that A is a 3-by-6 logical matrix.

Test an Entire Array

Use the islogical function to test whether A is logical.

5 The Logical Class

5-8

islogical(A)

ans =

 1

The result is logical 1 (true).

Use the class function to display a string with the class name of A.

class(A)

ans =

logical

The result confirms that A is logical.

Test Each Array Element

Create a cell array, C, and use the 'islogical' option of the cellfun function to
identify which cells contain logical values.

C = {1, 0, true, false, pi, A};

cellfun('islogical',C)

ans =

 0 0 1 1 0 1

The result is a logical array of the same size as C.

To test each element in a numeric matrix, use the arrayfun function.

arrayfun(@islogical,A)

ans =

 1 1 1 1 1 1

 1 1 1 1 1 1

 1 1 1 1 1 1

The result is a matrix of logical values of the same size as A. arrayfun(@islogical,A)
always returns a matrix of all logical 1 (true) or logical 0 (false) values.

 Determine if Arrays Are Logical

5-9

Summary Table

Use these MATLAB functions to determine if an array is logical.

Function Syntax Output Size Description

whos(A) N/A Displays the name, size,
storage bytes, class, and
attributes of variable A.

islogical(A) scalar Returns logical 1 (true) if A
is a logical array; otherwise,
it returns logical 0 (false).
The result is the same as
using isa(A,'logical').

isa(A,'logical') scalar Returns logical 1 (true) if A
is a logical array; otherwise,
it returns logical 0 (false).
The result is the same as
using islogical(A).

class(A) single string Returns a string with the
name of the class of variable
A.

cellfun('islogical',A) Array of the same size as A For cell arrays only. Returns
logical 1 (true) for each cell
that contains a logical array;
otherwise, it returns logical 0
(false).

arrayfun(@islogical,A) Array of the same size as A Returns an array of logical 1
(true) values if A is logical;
otherwise, it returns an
array of logical 0 (false)
values.

See Also
arrayfun | cellfun | class | isa | islogical | whos

5 The Logical Class

5-10

Reduce Logical Arrays to Single Value

Sometimes the result of a calculation produces an entire numeric or logical array when
you need only a single logical true or false value. In this case, use the any or all
functions to reduce the array to a single scalar logical for further computations.

The any and all functions are natural extensions of the logical | (OR) and & (AND)
operators, respectively. However, rather than comparing just two elements, the any
and all functions compare all of the elements in a particular dimension of an array.
It is as if all of those elements are connected by & or | operators and the any or all
functions evaluate the resulting long logical expression(s). Therefore, unlike the core
logical operators, the any and all functions reduce the size of the array dimension that
they operate on so that it has size 1. This enables the reduction of many logical values
into a single logical condition.

First, create a matrix, A, that contains random integers between 1 and 25.

rng(0)

A = randi(25,5)

A =

 21 3 4 4 17

 23 7 25 11 1

 4 14 24 23 22

 23 24 13 20 24

 16 25 21 24 17

Next, use the mod function along with the logical NOT operator, ~, to determine which
elements in A are even.

A = ~mod(A,2)

A =

 0 0 1 1 0

 0 0 0 0 0

 1 1 1 0 1

 0 1 0 1 1

 1 0 0 1 0

The resulting matrices have values of logical 1 (true) where an element is even, and
logical 0 (false) where an element is odd.

 Reduce Logical Arrays to Single Value

5-11

Since the any and all functions reduce the dimension that they operate on to size 1,
it normally takes two applications of one of the functions to reduce a 2–D matrix into a
single logical condition, such as any(any(A)). However, if you use the notation A(:) to
regard all of the elements of A as a single column vector, you can use any(A(:)) to get
the same logical information without nesting the function calls.

Determine if any elements in A are even.

any(A(:))

ans =

 1

The result is logical 1 (true).

You can perform logical and relational comparisons within the function call to any or
all. This makes it easy to quickly test an array for a variety of properties.

Determine if all elements in A are odd.

all(~A(:))

ans =

 0

The result is logical 0 (false).

Determine whether any main or super diagonal elements in A are even.

any(diag(A) | diag(A,1))

Error using |

Inputs must have the same size.

MATLAB returns an error since the vectors returned by diag(A) and diag(A,1) are
not the same size.

To reduce each diagonal to a single scalar logical condition and allow logical short-
circuiting, use the any function on each side of the short-circuit OR operator, ||.

any(diag(A)) || any(diag(A,1))

ans =

5 The Logical Class

5-12

 1

The result is logical 1 (true). It no longer matters that diag(A) and diag(A,1) are not
the same size.

See Also
all | and | any | Logical Operators: Short Circuit | or | xor

 Truth Table for Logical Operations

5-13

Truth Table for Logical Operations

The following reference table shows the results of applying the binary logical operators
to a series of logical 1 (true) and logical 0 (false) scalar pairs. To calculate NAND,
NOR or XNOR logical operations, simply apply the logical NOT operator to the result of a
logical AND, OR, or XOR operation, respectively.

Inputs A and B and

A & B

or

A | B

xor

xor(A,B)

not

~A

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

See Also
and | Logical Operators: Short Circuit | not | or | xor

6

Characters and Strings

• “Create Character Arrays” on page 6-2
• “Cell Arrays of Character Vectors” on page 6-7
• “Formatting Text” on page 6-10
• “Text Comparisons” on page 6-23
• “Searching and Replacing” on page 6-26
• “Convert from Numeric Values to Character Array” on page 6-28
• “Convert from Character Arrays to Numeric Values” on page 6-30
• “Function Summary” on page 6-33

6 Characters and Strings

6-2

Create Character Arrays

In this section...

“Create Character Vector” on page 6-2
“Create Rectangular Character Array” on page 6-3
“Identify Characters” on page 6-4
“Work with Space Characters” on page 6-5
“Expand Character Arrays” on page 6-6

Create Character Vector

Create a character vector by enclosing a sequence of characters in single quotation marks.

chr = 'Hello, world';

Character vectors are 1-by-n arrays of type char. In computer programming, string is a
frequently-used term for a 1-by-n array of characters.

whos chr

 Name Size Bytes Class Attributes

 chr 1x12 24 char

If the text contains a single quotation mark, include two quotation marks when assigning
the character vector.

newChr = 'You''re right'

newChr =

You're right

Functions such as uint16 convert characters to their numeric codes.

chrNumeric = uint16(chr)

chrNumeric =

 72 101 108 108 111 44 32 119 111 114 108 100

The char function converts the integer vector back to characters.

 Create Character Arrays

6-3

chrAlpha = char([72 101 108 108 111 44 32 119 111 114 108 100])

chrAlpha =

Hello, world

Create Rectangular Character Array

Character arrays are m-by-n arrays of characters, where m is not always 1. You can
join two or more character vectors together to create a character array. This is called
concatenation and is explained for numeric arrays in the section “Concatenating
Matrices”. As with numeric arrays, you can combine character arrays vertically or
horizontally to create a new character array.

Alternatively, combine character vectors into a cell array. Cell arrays are flexible
containers that allow you to easily combine character vectors of varying length.

Combine Character Vectors Vertically

To combine character vectors into a two-dimensional character array, use square
brackets or the char function.

• Apply the MATLAB concatenation operator, []. Separate each row with a semicolon
(;). Each row must contain the same number of characters. For example, combine
three character vectors of equal length:

devTitle = ['Thomas R. Lee'; ...

 'Sr. Developer'; ...

 'SFTware Corp.'];

If the character vectors have different lengths, pad with space characters as needed.
For example:

mgrTitle = ['Harold A. Jorgensen '; ...

 'Assistant Project Manager'; ...

 'SFTware Corp. '];

• Call the char function. If the character vectors have different lengths, char pads
the shorter vectors with trailing blanks so that each row has the same number of
characters.

mgrTitle = char('Harold A. Jorgensen', ...

 'Assistant Project Manager', 'SFTware Corp.');

../ref/specialcharacters.html

6 Characters and Strings

6-4

The char function creates a 3-by-25 character array mgrTitle.

Combining Character Vectors Horizontally

To combine character vectors into a single row vector, use square brackets or the strcat
function.

• Apply the MATLAB concatenation operator, []. Separate the input character vectors
with a comma or a space. This method preserves any trailing spaces in the input
arrays.

name = 'Thomas R. Lee';

title = 'Sr. Developer';

company = 'SFTware Corp.';

fullName = [name ', ' title ', ' company]

MATLAB returns

fullName =

Thomas R. Lee, Sr. Developer, SFTware Corp.

• Call the concatenation function, strcat. This method removes trailing spaces in
the inputs. For example, combine character vectors to create a hypothetical email
address.

name = 'myname ';

domain = 'mydomain ';

ext = 'com ';

address = strcat(name, '@', domain, '.', ext)

MATLAB returns

address =

myname@mydomain.com

Identify Characters

Use any of the following functions to identify a character array, or certain characters in a
character array.

../ref/specialcharacters.html

 Create Character Arrays

6-5

Function Description

ischar Determine whether the input is a character array
isletter Find all alphabetic letters in the input character array
isspace Find all space characters in the input character array
isstrprop Find all characters of a specific category

Find the spaces in a character vector.

chr = 'Find the space characters in this character vector';

% | | | | | | |

% 5 9 15 26 29 34 44

find(isspace(chr))

ans =

 5 9 15 26 29 34 44

Work with Space Characters

The blanks function creates a character vector of space characters. Create a vector of 15
space characters.

chr = blanks(15)

chr =

To make the example more useful, append a '|' character to the beginning and end of
the blank character vector so that you can see the output.

['|' chr '|']

ans =

| |

Insert a few nonspace characters in the middle of the blank character vector.

chr(6:10) = 'AAAAA';

['|' chr '|']

6 Characters and Strings

6-6

ans =

| AAAAA |

You can justify the positioning of these characters to the left or right using the strjust
function:

chrLeft = strjust(chr,'left');

['|' chrLeft '|']

ans =

|AAAAA |

chrRight = strjust(chr,'right');

['|' chrRight '|']

ans =

| AAAAA|

Remove all trailing space characters with deblank:

chrDeblank = deblank(chr);

['|' chrDeblank '|']

ans =

| AAAAA|

Remove all leading and trailing spaces with strtrim:

chrTrim = strtrim(chr);

['|' chrTrim '|']

ans =

|AAAAA|

Expand Character Arrays

Generally, MathWorks does not recommend expanding the size of an existing character
array by assigning additional characters to indices beyond the bounds of the array such
that part of the array becomes padded with zeros.

 Cell Arrays of Character Vectors

6-7

Cell Arrays of Character Vectors

In this section...

“Convert to Cell Array of Character Vectors” on page 6-7
“Functions for Cell Arrays of Character Vectors” on page 6-8

Convert to Cell Array of Character Vectors

When you create character arrays from character vectors, all the vectors must have
the same length. This often means that you have to pad blanks at the end of character
vectors to equalize their length. However, another type of MATLAB array, the cell array,
can hold different sizes and types of data in an array without padding. A cell array of
character vectors is a cell array where every cell contains a character vector. Cell array
of strings is another frequently-used term for such a cell array. Cell arrays of character
vectors provide a more flexible way to store character vectors of varying lengths.

Convert a character array to a cell array of character vectors. data is padded with
spaces so that each row has an equal number of characters. Use cellstr to convert the
character array.

data = ['Allison Jones';'Development ';'Phoenix '];

celldata = cellstr(data)

celldata =

 'Allison Jones'

 'Development'

 'Phoenix'

data is a 3-by-13 character array, while celldata is a 3-by-1 cell array of character
vectors. cellstr also strips the blank spaces at the ends of the rows of data.

The iscellstr function determines if the input argument is a cell array of character
vectors. It returns a logical 1 (true) in the case of celldata:

iscellstr(celldata)

ans =

 1

6 Characters and Strings

6-8

Use char to convert back to a padded character array.

chr = char(celldata)

chr =

Allison Jones

Development

Phoenix

length(chr(3,:))

ans =

 13

For more information on cell arrays, see “Access Data in a Cell Array” on page 11-5.

Functions for Cell Arrays of Character Vectors

This table describes the MATLAB functions for working with cell arrays of character
vectors.

Function Description

cellstr Convert a character array to a cell array of character vectors.
char Convert a cell array of character vectors to a character array.
deblank Remove trailing blanks from a character array.
iscellstr Return true for a cell array of character arrays.
sort Sort elements in ascending or descending order.
strcat Concatenate character arrays or cell arrays of character arrays.
strcmp Compare character arrays or cell arrays of character arrays.

You can also use the following set functions with cell arrays of character vectors.

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.
setdiff Return the set difference of two vectors.

 Cell Arrays of Character Vectors

6-9

Function Description

setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.
unique Set the unique elements of a vector.

6 Characters and Strings

6-10

Formatting Text

In this section...

“Functions That Format Data into Text” on page 6-10
“The Format Specifier” on page 6-11
“Input Value Arguments” on page 6-12
“The Formatting Operator” on page 6-13
“Constructing the Formatting Operator” on page 6-14
“Setting Field Width and Precision” on page 6-19
“Restrictions for Using Identifiers” on page 6-21

Functions That Format Data into Text

The following MATLAB functions offer the capability to compose character arrays that
includes ordinary text and data formatted to your specification:

• sprintf — Write formatted data to an output character vector
• fprintf — Write formatted data to an output file or the Command Window
• warning — Display formatted data in a warning message
• error — Display formatted data in an error message and abort
• assert — Generate an error when a condition is violated
• MException — Capture error information

The syntax of each of these functions includes formatting operators similar to those used
by the printf function in the C programming language. For example, %s tells MATLAB
to interpret an input value as a character vector, and %d means to format an integer
using decimal notation.

The general formatting syntax for these functions is

functionname(..., formatSpec, value1, value2, ..., valueN)

where the formatSpec argument expresses the basic content and formatting of the final
output, and the value arguments that follow supply data values to be inserted into the
character vector.

 Formatting Text

6-11

Here is a sample sprintf statement, also showing the resulting output:

sprintf('The price of %s on %d/%d/%d was $%.2f.', ...

 'bread', 7, 1, 2006, 2.49)

ans =

 The price of bread on 7/1/2006 was $2.49.

Note: The examples in this section of the documentation use only the sprintf function
to demonstrate how to format text. However, you can run the examples using the
fprintf, warning, and error functions as well.

The Format Specifier

The first input argument in the sprintf statement shown above is the formatSpec:

'The price of %s on %d/%d/%d was $%.2f.'

This argument can include ordinary text, formatting operators and, in some cases,
special characters. The formatting operators in this example are: %s, %d, %d, %d, and
%.2f.

Following the formatSpec argument are five additional input arguments, one for each of
the formatting operators in the character vector:

'bread', 7, 1, 2006, 2.49

When MATLAB processes the format specifier, it replaces each operator with one of these
input values.

Special Characters

Special characters are a part of the text in the character vector. But, because they cannot
be entered as ordinary text, they require a unique character sequence to represent them.
Use any of the following character sequences to insert special characters into the output.

To Insert a . . . Use . . .

Single quotation mark ''

Percent character %%

Backslash \\

6 Characters and Strings

6-12

To Insert a . . . Use . . .

Alarm \a

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Vertical tab \v

Hexadecimal number, N \xN

Octal number, N \N

Input Value Arguments

In the syntax

functionname(..., formatSpec, value1, value2, ..., valueN)

The value arguments must immediately follow formatSpec in the argument list. In
most instances, you supply one of these value arguments for each formatting operator
used in the formatSpec. Scalars, vectors, and numeric and character arrays are valid
value arguments. You cannot use cell arrays or structures.

If you include fewer formatting operators than there are values to insert, MATLAB
reuses the operators on the additional values. This example shows two formatting
operators and six values to insert into the output text:

sprintf('%s = %d\n', 'A', 479, 'B', 352, 'C', 651)

ans =

 A = 479

 B = 352

 C = 651

You can also specify multiple value arguments as a vector or matrix. formatSpec needs
one %s operator for the entire matrix or vector:

mvec = [77 65 84 76 65 66];

sprintf('%s ', char(mvec))

 Formatting Text

6-13

ans =

 MATLAB

Sequential and Numbered Argument Specification

You can place value arguments in the argument list either sequentially (that is, in the
same order in which their formatting operators appear in the string), or by identifier
(adding a number to each operator that identifies which value argument to replace it
with). By default, MATLAB uses sequential ordering.

To specify arguments by a numeric identifier, add a positive integer followed by a $
sign immediately after the % sign in the operator. Numbered argument specification is
explained in more detail under the topic “Value Identifiers” on page 6-18.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...

 '1st', '2nd', '3rd')

ans =

 1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...

 '1st', '2nd', '3rd')

ans =

 3rd 2nd 1st

The Formatting Operator

Formatting operators tell MATLAB how to format the numeric or character value
arguments and where to insert them into the output text. These operators control the
notation, alignment, significant digits, field width, and other aspects of the output.

A formatting operator begins with a % character, which may be followed by a series of
one or more numbers, characters, or symbols, each playing a role in further defining
the format of the insertion value. The final entry in this series is a single conversion
character that MATLAB uses to define the notation style for the inserted data.
Conversion characters used in MATLAB are based on those used by the printf function
in the C programming language.

Here is a simple example showing five formatting variations for a common value:

A = pi*100*ones(1,5);

sprintf(' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)

ans =

6 Characters and Strings

6-14

 314.159265 % Display in fixed-point notation (%f)

 314.16 % Display 2 decimal digits (%.2f)

 +314.16 % Display + for positive numbers (%+.2f)

 314.16 % Set width to 12 characters (%12.2f)

 000000314.16 % Replace leading spaces with 0 (%012.2f)

Constructing the Formatting Operator

The fields that make up a formatting operator in MATLAB are as shown here, in the
order they appear from right to left in the operator. The rightmost field, the conversion
character, is required; the five to the left of that are optional. Each of these fields is
explained in a section below:

• Conversion Character — Specifies the notation of the output.
• Subtype — Further specifies any nonstandard types.
• Precision — Sets the number of digits to display to the right of the decimal point, or

the number of significant digits to display.
• Field Width — Sets the minimum number of digits to display.
• Flags — Controls the alignment, padding, and inclusion of plus or minus signs.
• Value Identifiers — Map formatting operators to value input arguments. Use the

identifier field when value arguments are not in a sequential order in the argument
list.

Here is an example of a formatting operator that uses all six fields. (Space characters
are not allowed in the operator. They are shown here only to improve readability of the
figure).

% 3$ 0� 12 .5 b u

Conversion characterIdentifier

Flags

PrecisionField width

Subtype

An alternate syntax, that enables you to supply values for the field width and precision
fields from values in the argument list, is shown below. See the section “Specifying Field
Width and Precision Outside the Format Specifier” on page 6-20 for information on

 Formatting Text

6-15

when and how to use this syntax. (Again, space characters are shown only to improve
readability of the figure.)

Each field of the formatting operator is described in the following sections. These fields
are covered as they appear going from right to left in the formatting operator, starting
with the Conversion Character and ending with the Identifier field.

Conversion Character

The conversion character specifies the notation of the output. It consists of a single
character and appears last in the format specifier. It is the only required field of the
format specifier other than the leading % character.

Specifier Description

c Single character
d Decimal notation (signed)
e Exponential notation (using a lowercase e as in 3.1415e+00)
E Exponential notation (using an uppercase E as in 3.1415E+00)
f Fixed-point notation
g The more compact of %e or %f. (Insignificant zeros do not print.)
G Same as %g, but using an uppercase E
o Octal notation (unsigned)
s Character vector
u Decimal notation (unsigned)
x Hexadecimal notation (using lowercase letters a–f)
X Hexadecimal notation (using uppercase letters A–F)

This example uses conversion characters to display the number 46 in decimal, fixed-
point, exponential, and hexadecimal formats:

A = 46*ones(1,4);

6 Characters and Strings

6-16

sprintf('%d %f %e %X', A)

ans =

46 46.000000 4.600000e+01 2E

Subtype

The subtype field is a single alphabetic character that immediately precedes the
conversion character. To convert a floating-point value to its octal, decimal, or
hexadecimal value, use one of following subtype specifiers. These subtypes support the
conversion characters %o, %x, %X, and %u.

b The underlying C data type is a double rather than an unsigned integer. For
example, to print a double-precision value in hexadecimal, use a format like
'%bx'.

t The underlying C data type is a float rather than an unsigned integer.

Precision

precision in a formatting operator is a nonnegative integer that immediately follows
a period. For example, the specifier %7.3f, has a precision of 3. For the %g specifier,
precision indicates the number of significant digits to display. For the %f, %e, and %E
specifiers, precision indicates how many digits to display to the right of the decimal
point.

Here are some examples of how the precision field affects different types of notation:

sprintf('%g %.2g %f %.2f', pi*50*ones(1,4))

ans =

157.08 1.6e+02 157.079633 157.08

Precision is not usually used in format specifiers for character vectors (i.e., %s). If you
do use it on a character vector and if the value p in the precision field is less than the
number of characters in the vector, MATLAB displays only p characters and truncates
the rest.

You can also supply the value for a precision field from outside of the format specifier.
See the section “Specifying Field Width and Precision Outside the Format Specifier” on
page 6-20 for more information on this.

For more information on the use of precision in formatting, see “Setting Field Width
and Precision” on page 6-19.

 Formatting Text

6-17

Field Width

Field width in a formatting operator is a nonnegative integer that tells MATLAB the
minimum number of digits or characters to use when formatting the corresponding input
value. For example, the specifier %7.3f, has a width of 7.

Here are some examples of how the width field affects different types of notation:

sprintf('|%e|%15e|%f|%15f|', pi*50*ones(1,4))

ans =

|1.570796e+02| 1.570796e+02|157.079633| 157.079633|

When used on a character vector, the field width can determine whether MATLAB
pads the vector with spaces. If width is less than or equal to the number of characters in
the string, it has no effect.

sprintf('%30s', 'Pad left with spaces')

ans =

 Pad left with spaces

You can also supply a value for field width from outside of the format specifier. See
the section “Specifying Field Width and Precision Outside the Format Specifier” on page
6-20 for more information on this.

For more information on the use of field width in formatting, see “Setting Field Width
and Precision” on page 6-19.

Flags

You can control the output using any of these optional flags:

Character Description Example

A minus sign (-) Left-justifies the converted
argument in its field.

%-5.2d

A plus sign (+) Always prints a sign character
(+ or –).

%+5.2d

A space () Inserts a space before the
value.

% 5.2f

Zero (0) Pads with zeros rather than
spaces.

%05.2f

A pound sign (#) Modifies selected numeric
conversions:

%#5.0f

6 Characters and Strings

6-18

Character Description Example
• For %o, %x, or %X, print 0,

0x, or 0X prefix.
• For %f, %e, or %E, print

decimal point even when
precision is 0.

• For %g or %G, do not remove
trailing zeros or decimal
point.

Right- and left-justify the output. The default is to right-justify:

sprintf('right-justify: %12.2f\nleft-justify: %-12.2f', ...

 12.3, 12.3)

ans =

 right-justify: 12.30

 left-justify: 12.30

Display a + sign for positive numbers. The default is to omit the + sign:

sprintf('no sign: %12.2f\nsign: %+12.2f', ...

 12.3, 12.3)

ans =

 no sign: 12.30

 sign: +12.30

Pad to the left with spaces or zeros. The default is to use space-padding:

sprintf('space-padded: %12.2f\nzero-padded: %012.2f', ...

 5.2, 5.2)

ans =

 space-padded: 5.20

 zero-padded: 000000005.20

Note: You can specify more than one flag in a formatting operator.

Value Identifiers

By default, MATLAB inserts data values from the argument list into the output text in
a sequential order. If you have a need to use the value arguments in a nonsequential

 Formatting Text

6-19

order, you can override the default by using a numeric identifier in each format specifier.
Specify nonsequential arguments with an integer immediately following the % sign,
followed by a $ sign.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...

 '1st', '2nd', '3rd')

ans =

 1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...

 '1st', '2nd', '3rd')

ans =

 3rd 2nd 1st

Setting Field Width and Precision

This section provides further information on the use of the field width and precision
fields of the formatting operator:

• “Effect on the Output Text” on page 6-19
• “Specifying Field Width and Precision Outside the Format Specifier” on page 6-20
• “Using Identifiers In the Width and Precision Fields” on page 6-21

Effect on the Output Text

The figure below illustrates the way in which the field width and precision settings affect
the output of the formatting functions. In this figure, the zero following the % sign in
the formatting operator means to add leading zeros to the output text rather than space
characters:

123.45678 %09.3f 00123.457

 Whole part of input
value has has 3 digits

Fractional part of input
 value has 5 digits

field width: w = 9
precision: p = 3

Fractional part of the
 result has p digits
 and is rounded

Format operator

Result has w digits,
 extending to the
 left with zeros

6 Characters and Strings

6-20

General rules for formatting

• If precision is not specified, it defaults to 6.
• If precision (p) is less than the number of digits in the fractional part of the input

value (f), then only p digits are shown to the right of the decimal point in the output,
and that fractional value is rounded.

• If precision (p) is greater than the number of digits in the fractional part of the input
value (f), then p digits are shown to the right of the decimal point in the output, and
the fractional part is extended to the right with p-f zeros.

• If field width is not specified, it defaults to precision + 1 + the number of digits in
the whole part of the input value.

• If field width (w) is greater than p+1 plus the number of digits in the whole part of the
input value (n), then the whole part of the output value is extended to the left with w-
(n+1+p) space characters or zeros, depending on whether or not the zero flag is set
in the Flags field. The default is to extend the whole part of the output with space
characters.

Specifying Field Width and Precision Outside the Format Specifier

To specify field width or precision using values from a sequential argument list, use an
asterisk (*) in place of the field width or precision field of the formatting operator.

This example formats and displays three numbers. The formatting operator for the first,
%*f, has an asterisk in the field width location of the formatting operator, specifying that
just the field width, 15, is to be taken from the argument list. The second operator, %.*f
puts the asterisk after the decimal point meaning, that it is the precision that is to take
its value from the argument list. And the third operator, %*.*f, specifies both field width
and precision in the argument list:

 sprintf('%*f %.*f %*.*f', ...

 15, 123.45678, ... % Width for 123.45678 is 15

 3, 16.42837, ... % Precision for rand*20 is .3

 6, 4, pi) % Width & Precision for pi is 6.4

ans =

 123.456780 16.428 3.1416

You can mix the two styles. For example, this statement gets the field width from the
argument list and the precision from the format specifier:

sprintf('%*.2f', 5, 123.45678)

ans =

 Formatting Text

6-21

 123.46

Using Identifiers In the Width and Precision Fields

You can also derive field width and precision values from a nonsequential (i.e.,
numbered) argument list. Inside the formatting operator, specify field width and/or
precision with an asterisk followed by an identifier number, followed by a $ sign.

This example from the previous section shows how to obtain field width and precision
from a sequential argument list:

sprintf('%*f %.*f %*.*f', ...

 15, 123.45678, ...

 3, 16.42837, ...

 6, 4, pi)

ans =

 123.456780 16.428 3.1416

Here is an example of how to do the same thing using numbered ordering. Field width
for the first output value is 15, precision for the second value is 3, and field width and
precision for the third value is 6 and 4, respectively. If you specify field width or precision
with identifiers, then you must specify the value with an identifier as well:

sprintf('%1$*4$f %2$.*5$f %3$*6$.*7$f', ...

123.45678, 16.42837, pi, 15, 3, 6, 4)

ans =

 123.456780 16.428 3.1416

Restrictions for Using Identifiers

If any of the formatting operators include an identifier field, then all of the operators
in that format specifier must do the same; you cannot use both sequential and
nonsequential ordering in the same function call.

Valid Syntax Invalid Syntax

sprintf('%d %d %d %d', ...

 1, 2, 3, 4)

ans =

 1 2 3 4

sprintf('%d %3$d %d %d', ...

 1, 2, 3, 4)

ans =

 1

6 Characters and Strings

6-22

If your command provides more value arguments than there are formatting operators in
the format specifier, MATLAB reuses the operators. However, MATLAB allows this only
for commands that use sequential ordering. You cannot reuse formatting operators when
making a function call with numbered ordering of the value arguments.

Valid Syntax Invalid Syntax

sprintf('%d', 1, 2, 3, 4)

ans =

 1234

sprintf('%1$d', 1, 2, 3, 4)

ans =

 1

Also, do not use identifiers when the value arguments are in the form of a vector or
array:

Valid Syntax Invalid Syntax

v = [1.4 2.7 3.1];

sprintf('%.4f %.4f %.4f', v)

ans =

 1.4000 2.7000 3.1000

v = [1.4 2.7 3.1];

sprintf('%3$.4f %1$.4f %2$.4f', v)

ans =

 Empty string: 1-by-0

 Text Comparisons

6-23

Text Comparisons

There are several ways to compare character arrays and subarrays:

• You can compare two character arrays, or parts of two character arrays, for equality.
• You can compare individual characters in two character arrays for equality.
• You can categorize every element within a character array, determining whether each

element is a character or white space.

These functions work for both character arrays and cell arrays of character vectors.

Compare Character Arrays for Equality

You can use any of four functions to determine if two input character arrays are
identical:

• strcmp determines if two character arrays are identical.
• strncmp determines if the first n characters of two character arrays are identical.
• strcmpi and strncmpi are the same as strcmp and strncmp, except that they

ignore case.

Consider the two character vectors

chr1 = 'hello';

chr2 = 'help';

chr1 and chr2 are not identical, so invoking strcmp returns logical 0 (false). For
example,

C = strcmp(chr1,chr2)

C =

 0

Note For C programmers, this is an important difference between the MATLAB strcmp
and C strcmp() functions, where the latter returns 0 if the two inputs are the same.

The first three characters of chr1 and chr2 are identical, so invoking strncmp with any
value up to 3 returns 1:

6 Characters and Strings

6-24

C = strncmp(chr1, chr2, 2)

C =

 1

These functions work cell-by-cell on a cell array of character vectors. Consider the two
cell arrays of character vectors

A = {'pizza'; 'chips'; 'candy'};

B = {'pizza'; 'chocolate'; 'pretzels'};

Now apply the text comparison functions:

strcmp(A,B)

ans =

 1

 0

 0

strncmp(A,B,1)

ans =

 1

 1

 0

Comparing for Equality Using Operators

You can use MATLAB relational operators on character arrays, as long as the arrays you
are comparing have equal dimensions, or one is a scalar. For example, you can use the
equality operator (==) to determine where the matching characters are in two character
vectors:

A = 'fate';

B = 'cake';

A == B

ans =

 0 1 0 1

All of the relational operators (>, >=, <, <=, ==, ~=) compare the values of corresponding
characters. For more information on relational operators, see “Relational Operations”.

Categorize Characters Within Character Array

There are three functions for categorizing characters inside a character array:

 Text Comparisons

6-25

1 isletter determines if a character is a letter.

2 isspace determines if a character is white space (blank, tab, or new line).
3 isstrprop checks characters in a character array to see if they match a category

you specify, such as

• Alphabetic
• Alphanumeric
• Lowercase or uppercase
• Decimal digits
• Hexadecimal digits
• Control characters
• Graphic characters
• Punctuation characters
• Whitespace characters

For example, create a character vector named chr:

chr = 'Room 401';

isletter examines each character, producing an output vector of the same length as
chr:

A = isletter(chr)

A =

 1 1 1 1 0 0 0 0

The first four elements in A are logical 1 (true) because the first four characters of chr
are letters.

6 Characters and Strings

6-26

Searching and Replacing

MATLAB provides several functions for searching and replacing characters in a
character array. (MATLAB also supports search and replace operations using regular
expressions. See Regular Expressions.)

Consider a character vector named label:

label = 'Sample 1, 10/28/95';

The strrep function performs the standard search-and-replace operation. Use strrep
to change the date from '10/28' to '10/30':

newlabel = strrep(label, '28', '30')

newlabel =

 Sample 1, 10/30/95

strfind returns the starting position of a term you specify within a longer character
vector. To find all occurrences of 'amp' inside label, use

position = strfind(label, 'amp')

position =

 2

The position within label where the only occurrence of 'amp' begins is the second
character.

The textscan function parses a character array to identify numbers or subarrays of
characters. Describe each component with conversion specifiers, such as %s for character
vectors, %d for integers, or %f for floating-point numbers. Optionally, include any literal
text to ignore.

For example, identify the sample number and date from label:

parts = textscan(label, 'Sample %d, %s');

parts{:}

ans =

 1

ans =

 '10/28/95'

To parse character vectors in a cell array, use the strtok function. For example:

 Searching and Replacing

6-27

c = {'all in good time'; ...

 'my dog has fleas'; ...

 'leave no stone unturned'};

first_words = strtok(c)

6 Characters and Strings

6-28

Convert from Numeric Values to Character Array

In this section...

“Function Summary” on page 6-28
“Convert Numbers to Character Codes” on page 6-29
“Represent Numbers as Text” on page 6-29
“Convert to Specific Radix” on page 6-29

Function Summary

The functions listed in this table provide a number of ways to convert numeric data to
character arrays.

Function Description Example

char Convert a positive integer to an equivalent
character. (Truncates any fractional parts.)

[72 105] → 'Hi'

int2str Convert a positive or negative integer to a character
type. (Rounds any fractional parts.)

[72 105] → '72
105'

num2str Convert a numeric type to a character type of the
specified precision and format.

[72 105] →
'72/105/' (format set
to %1d/)

mat2str Convert a numeric type to a character type of the
specified precision, returning a character vector
MATLAB can evaluate.

[72 105] → '[72
105]'

dec2hex Convert a positive integer to a character type of
hexadecimal base.

[72 105] → '48 69'

dec2bin Convert a positive integer to a character type of
binary base.

[72 105] →
'1001000
1101001'

dec2base Convert a positive integer to a character type of any
base from 2 through 36.

[72 105] → '110
151' (base set to 8)

 Convert from Numeric Values to Character Array

6-29

Convert Numbers to Character Codes

The char function converts integers to Unicode character codes and returns a character
array composed of the equivalent characters:

x = [77 65 84 76 65 66];

char(x)

ans =

 MATLAB

Represent Numbers as Text

The int2str, num2str, and mat2str functions represent numeric values as text
where each character represents a separate digit of the input value. The int2str and
num2str functions are often useful for labeling plots. For example, the following lines
use num2str to prepare automated labels for the x-axis of a plot:

function plotlabel(x, y)

plot(x, y)

chr1 = num2str(min(x));

chr2 = num2str(max(x));

out = ['Value of f from ' chr1 ' to ' chr2];

xlabel(out);

Convert to Specific Radix

Another class of conversion functions changes numeric values into character arrays
representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

6 Characters and Strings

6-30

Convert from Character Arrays to Numeric Values

In this section...

“Function Summary” on page 6-30
“Convert from Character Code” on page 6-30
“Convert Text that Represents Numeric Values” on page 6-31
“Convert from Specific Radix” on page 6-31

Function Summary

The functions listed in this table provide a number of ways to convert character arrays to
numeric data.

Function Description Example

uintN (e.g., uint8) Convert a character to an integer code that
represents that character.

'Hi' → 72 105

str2num Convert a character type to a numeric type. '72 105' → [72 105]
str2double Similar to str2num, but offers better

performance and works with cell arrays of
character vectors.

{'72' '105'} → [72

105]

hex2num Convert a numeric type to a character type of
specified precision, returning a character array
that MATLAB can evaluate.

'A' →
'-1.4917e-154'

hex2dec Convert a character type of hexadecimal base to
a positive integer.

'A' → 10

bin2dec Convert a character type of binary number to a
decimal number.

'1010' → 10

base2dec Convert a character type of any base number
from 2 through 36 to a decimal number.

'12' → 10 (if base ==
8)

Convert from Character Code

Character arrays store each character as a 16-bit numeric value. Use one of the integer
conversion functions (e.g., uint8) or the double function to convert characters to their
numeric values, and char to revert to character representation:

 Convert from Character Arrays to Numeric Values

6-31

name = 'Thomas R. Lee';

name = double(name)

name =

 84 104 111 109 97 115 32 82 46 32 76 101 101

name = char(name)

name =

 Thomas R. Lee

Convert Text that Represents Numeric Values

Use str2num to convert a character array to the numeric value it represents:

chr = '37.294e-1';

val = str2num(chr)

val =

 3.7294

The str2double function converts a cell array of character vectors to the double-
precision values they represent:

c = {'37.294e-1'; '-58.375'; '13.796'};

d = str2double(c)

d =

 3.7294

 -58.3750

 13.7960

whos

 Name Size Bytes Class

 c 3x1 224 cell

 d 3x1 24 double

Convert from Specific Radix

To convert from a character representation of a nondecimal number to the value of that
number, use one of these functions: hex2num, hex2dec, bin2dec, or base2dec.

6 Characters and Strings

6-32

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs, but
hex2num returns the IEEE double-precision floating-point number it represents, while
hex2dec converts to a decimal integer.

 Function Summary

6-33

Function Summary

MATLAB provides these functions for working with character arrays:

• Functions to Create Character Arrays
• Functions to Modify Character Arrays
• Functions to Read and Operate on Character Arrays
• Functions to Search or Compare Character Arrays
• Functions to Determine Class or Content
• Functions to Convert Between Numeric and Text Data Types
• Functions to Work with Cell Arrays of Character Vectors as Sets

Functions to Create Character Arrays

Function Description

'chr' Create the character vector specified between quotes.
blanks Create a character vector of blanks.
sprintf Write formatted data as text.
strcat Concatenate character arrays.
char Concatenate character arrays vertically.

Functions to Modify Character Arrays

Function Description

deblank Remove trailing blanks.
lower Make all letters lowercase.
sort Sort elements in ascending or descending order.
strjust Justify a character array.
strrep Replace text within a character array.
strtrim Remove leading and trailing white space.
upper Make all letters uppercase.

Functions to Read and Operate on Character Arrays

6 Characters and Strings

6-34

Function Description

eval Execute a MATLAB expression.
sscanf Read a character array under format control.

Functions to Search or Compare Character Arrays

Function Description

regexp Match regular expression.
strcmp Compare character arrays.
strcmpi Compare character arrays, ignoring case.
strfind Find a term within a character vector.
strncmp Compare the first N characters of character arrays.
strncmpi Compare the first N characters, ignoring case.
strtok Find a token in a character vector.
textscan Read data from a character array.

Functions to Determine Class or Content

Function Description

iscellstr Return true for a cell array of character vectors.
ischar Return true for a character array.
isletter Return true for letters of the alphabet.
isstrprop Determine if a string is of the specified category.
isspace Return true for white-space characters.

Functions to Convert Between Numeric and Text Data Types

Function Description

char Convert to a character array.
cellstr Convert a character array to a cell array of character vectors.
double Convert a character array to numeric codes.
int2str Represent an integer as text.
mat2str Convert a matrix to a character array you can run eval on.

 Function Summary

6-35

Function Description

num2str Represent a number as text.
str2num Convert a character vector to the number it represents.
str2double Convert a character vector to the double-precision value it

represents.

Functions to Work with Cell Arrays of Character Vectors as Sets

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.
setdiff Return the set difference of two vectors.
setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.
unique Set the unique elements of a vector.

7

Dates and Time

• “Represent Dates and Times in MATLAB” on page 7-2
• “Specify Time Zones” on page 7-6
• “Set Date and Time Display Format” on page 7-8
• “Generate Sequence of Dates and Time” on page 7-13
• “Share Code and Data Across Locales” on page 7-22
• “Extract or Assign Date and Time Components of Datetime Array” on page 7-25
• “Combine Date and Time from Separate Variables” on page 7-30
• “Date and Time Arithmetic” on page 7-32
• “Compare Dates and Time” on page 7-40
• “Plot Dates and Durations” on page 7-44
• “Core Functions Supporting Date and Time Arrays” on page 7-55
• “Convert Between Datetime Arrays, Numbers, and Strings” on page 7-56
• “Carryover in Date Vectors and Strings” on page 7-61
• “Converting Date Vector Returns Unexpected Output” on page 7-62

7 Dates and Time

7-2

Represent Dates and Times in MATLAB

The primary way to store date and time information is in datetime arrays, which
support arithmetic, sorting, comparisons, plotting, and formatted display. The results of
arithmetic differences are returned in duration arrays or, when you use calendar-based
functions, in calendarDuration arrays.

For example, create a MATLAB datetime array that represents two dates: June 28, 2014
at 6 a.m. and June 28, 2014 at 7 a.m. Specify numeric values for the year, month, day,
hour, minute, and second components for the datetime.

t = datetime(2014,6,28,6:7,0,0)

t =

 28-Jun-2014 06:00:00 28-Jun-2014 07:00:00

Change the value of a date or time component by assigning new values to the properties
of the datetime array. For example, change the day number of each datetime by
assigning new values to the Day property.

t.Day = 27:28

t =

 27-Jun-2014 06:00:00 28-Jun-2014 07:00:00

Change the display format of the array by changing its Format property. The following
format does not display any time components. However, the values in the datetime array
do not change.

t.Format = 'MMM dd, yyyy'

t =

 Jun 27, 2014 Jun 28, 2014

If you subtract one datetime array from another, the result is a duration array in
units of fixed length.

t2 = datetime(2014,6,29,6,30,45)

t2 =

 Represent Dates and Times in MATLAB

7-3

 29-Jun-2014 06:30:45

d = t2 - t

d =

 48:30:45 23:30:45

By default, a duration array displays in the format, hours:minutes:seconds. Change
the display format of the duration by changing its Format property. You can display the
duration value with a single unit, such as hours.

d.Format = 'h'

d =

 48.512 hrs 23.512 hrs

You can create a duration in a single unit using the seconds, minutes, hours, days, or
years functions. For example, create a duration of 2 days, where each day is exactly 24
hours.

d = days(2)

d =

 2 days

You can create a calendar duration in a single unit of variable length. For example, one
month can be 28, 29, 30, or 31 days long. Specify a calendar duration of 2 months.

L = calmonths(2)

L =

 2mo

Use the caldays, calweeks, calquarters, and calyears functions to specify
calendar durations in other units.

Add a number of calendar months and calendar days. The number of days remains
separate from the number of months because the number of days in a month is not fixed,
and cannot be determined until you add the calendar duration to a specific datetime.

L = calmonths(2) + caldays(35)

7 Dates and Time

7-4

L =

 2mo 35d

Add calendar durations to a datetime to compute a new date.

t2 = t + calmonths(2) + caldays(35)

t2 =

 Oct 01, 2014 Oct 02, 2014

t2 is also a datetime array.

whos t2

 Name Size Bytes Class Attributes

 t2 1x2 161 datetime

In summary, there are several ways to represent dates and times, and MATLAB has a
data type for each approach:

• Represent a point in time, using the datetime data type.
Example: Wednesday, June 18, 2014 10:00:00

• Represent a length of time, or a duration in units of fixed length, using the duration
data type. When using the duration data type, 1 day is always equal to 24 hours,
and 1 year is always equal to 365.2425 days.
Example: 72 hours and 10 minutes

• Represent a length of time, or a duration in units of variable length, using the
calendarDuration data type.
Example: 1 month, which can be 28, 29, 30, or 31 days long.
The calendarDuration data type also accounts for daylight saving time changes
and leap years, so that 1 day might be more or less than 24 hours, and 1 year can
have 365 or 366 days.

 Represent Dates and Times in MATLAB

7-5

See Also
calendarDuration | datetime | datetime Properties | duration

7 Dates and Time

7-6

Specify Time Zones

In MATLAB, a time zone includes the time offset from Coordinated Universal Time
(UTC), the daylight saving time offset, and a set of historical changes to those values.
The time zone setting is stored in the TimeZone property of each datetime array. When
you create a datetime, it is unzoned by default. That is, the TimeZone property of the
datetime is empty (''). If you do not work with datetime values from multiple time zones
and do not need to account for daylight saving time, you might not need to specify this
property.

You can specify a time zone when you create a datetime, using the 'TimeZone' name-
value pair argument. The time zone value 'local' specifies the system time zone. To
display the time zone offset for each datetime, include a time zone offset specifier such as
'Z' in the value for the 'Format' argument.

t = datetime(2014,3,8:9,6,0,0,'TimeZone','local',...

 'Format','d-MMM-y HH:mm:ss Z')

t =

 8-Mar-2014 06:00:00 -0500 9-Mar-2014 06:00:00 -0400

A different time zone offset is displayed depending on whether the datetime occurs
during daylight saving time.

You can modify the time zone of an existing datetime. For example, change the
TimeZone property of t using dot notation. You can specify the time zone value as
the name of a time zone region in the IANA Time Zone Database. A time zone region
accounts for the current and historical rules for standard and daylight offsets from UTC
that are observed in that geographic region.

t.TimeZone = 'Asia/Shanghai'

t =

 8-Mar-2014 19:00:00 +0800 9-Mar-2014 18:00:00 +0800

You also can specify the time zone value as a character vector of the form +HH:mm or -
HH:mm, which represents a time zone with a fixed offset from UTC that does not observe
daylight saving time.

t.TimeZone = '+08:00'

 Specify Time Zones

7-7

t =

 8-Mar-2014 19:00:00 +0800 9-Mar-2014 18:00:00 +0800

Operations on datetime arrays with time zones automatically account for time zone
differences. For example, create a datetime in a different time zone.

u = datetime(2014,3,9,6,0,0,'TimeZone','Europe/London',...

 'Format','d-MMM-y HH:mm:ss Z')

u =

 9-Mar-2014 06:00:00 +0000

View the time difference between the two datetime arrays.

dt = t - u

dt =

 -19:00:00 04:00:00

When you perform operations involving datetime arrays, the arrays either must all have
a time zone associated with them, or they must all have no time zone.

See Also
datetime | datetime Properties | timezones

7 Dates and Time

7-8

Set Date and Time Display Format

In this section...

“Formats for Individual Date and Duration Arrays” on page 7-8
“datetime Display Format” on page 7-8
“duration Display Format” on page 7-9
“calendarDuration Display Format” on page 7-10
“Default datetime Format” on page 7-11

Formats for Individual Date and Duration Arrays

datetime, duration, and calendarDuration arrays have a Format property that
controls the display of values in each array. When you create a datetime array, it uses
the MATLAB global default datetime display format unless you explicitly provide a
format. Use dot notation to access the Format property to view or change its value. For
example, to set the display format for the datetime array, t, to the default format, type:

t.Format = 'default'

Changing the Format property does not change the values in the array, only their
display. For example, the following can be representations of the same datetime value
(the latter two do not display any time components):

Thursday, August 23, 2012 12:35:00

August 23, 2012

23-Aug-2012

The Format property of the datetime, duration, and calendarDuration data types
accepts different formats as inputs.

datetime Display Format

You can set the Format property to one of these character vectors.

Value of Format Description

'default' Use the default display format.

 Set Date and Time Display Format

7-9

Value of Format Description

'defaultdate' Use the default date display format that
does not show time components.

To change the default formats, see “Default datetime Format” on page 7-11.

Alternatively, you can use the letters A-Z and a-z to specify a custom date format. You
can include nonletter characters such as a hyphen, space, or colon to separate the fields.
This table shows several common display formats and examples of the formatted output
for the date, Saturday, April 19, 2014 at 9:41:06 PM in New York City.

Value of Format Example

'yyyy-MM-dd' 2014-04-19

'dd/MM/yyyy' 19/04/2014

'dd.MM.yyyy' 19.04.2014

'yyyy# MM# dd#' 2014# 04# 19#

'MMMM d, yyyy' April 19, 2014

'eeee, MMMM d, yyyy h:mm a' Saturday, April 19, 2014 9:41 PM

'MMMM d, yyyy HH:mm:ss Z' April 19, 2014 21:41:06 -0400

'yyyy-MM-dd''T''HH:mmXXX' 2014-04-19T21:41-04:00

For a complete list of valid symbolic identifiers, see the Format property for datetime
arrays.

Note: The letter identifiers that datetime accepts are different from those used by the
datestr, datenum, and datevec functions.

duration Display Format

To display a duration as a single number that includes a fractional part (for example,
1.234 hours), specify one of these character vectors:

Value of Format Description

'y' Number of exact fixed-length years. A fixed-length
year is equal to 365.2425 days.

7 Dates and Time

7-10

Value of Format Description

'd' Number of exact fixed-length days. A fixed-length day
is equal to 24 hours.

'h' Number of hours
'm' Number of minutes
's' Number of seconds

To specify the number of fractional digits displayed, user the format function.

To display a duration in the form of a digital timer, specify one of the following character
vectors.

• 'dd:hh:mm:ss'

• 'hh:mm:ss'

• 'mm:ss'

• 'hh:mm'

You also can display up to nine fractional second digits by appending up to nine S
characters. For example, 'hh:mm:ss.SSS' displays the milliseconds of a duration value
to 3 digits.

Changing the Format property does not change the values in the array, only their
display.

calendarDuration Display Format

Specify the Format property of a calendarDuration array as a character vector that
can include the characters y, q, m, w, d, and t, in this order. The character vector must
include m to display the number of months, d to display the number of days, and t to
display the number of hours, minutes, and seconds. The y, q, and w characters are
optional.

This table describes the date and time components that the characters represent.

Character Date or Time Unit Details

y Years Multiples of 12 months display as a number of
years.

 Set Date and Time Display Format

7-11

Character Date or Time Unit Details

q Quarters Multiples of 3 months display as a number of
quarters.

m Months Must be included in Format.
w Weeks Multiples of 7 days display as a number of

weeks.
d Days Must be included in Format.
t Time (hours, minutes,

and seconds)
Must be included in Format.

To specify the number of digits displayed for fractional seconds, use the format function.

If the value of a date or time component is zero, it is not displayed.

Changing the Format property does not change the values in the array, only their
display.

Default datetime Format

You can set default formats to control the display of datetime arrays created without
an explicit display format. These formats also apply when you set the Format property
of a datetime array to 'default' or 'defaultdate'. When you change the default
setting, datetime arrays set to use the default formats are displayed automatically
using the new setting.

Changes to the default formats persist across MATLAB sessions.

To specify a default format, type

datetime.setDefaultFormats('default',fmt)

where fmt is a character vector composed of the letters A-Z and a-z described for the
Format property of datetime arrays, above. For example,

datetime.setDefaultFormats('default','yyyy-MM-dd hh:mm:ss')

sets the default datetime format to include a 4-digit year, 2-digit month number, 2-digit
day number, and hour, minute, and second values.

In addition, you can specify a default format for datetimes created without time
components. For example,

7 Dates and Time

7-12

datetime.setDefaultFormats('defaultdate','yyyy-MM-dd')

sets the default date format to include a 4-digit year, 2-digit month number, and 2-digit
day number.

To reset the both the default format and the default date-only formats to the factory
defaults, type

datetime.setDefaultFormats('reset')

The factory default formats depend on your system locale.

You also can set the default formats in the Preferences dialog box. For more
information, see “Set Command Window Preferences”.

See Also
calendarDuration | datetime | datetime Properties | duration | format

 Generate Sequence of Dates and Time

7-13

Generate Sequence of Dates and Time

In this section...

“Sequence of Datetime or Duration Values Between Endpoints with Step Size” on page
7-13
“Add Duration or Calendar Duration to Create Sequence of Dates” on page 7-16
“Specify Length and Endpoints of Date or Duration Sequence” on page 7-17
“Sequence of Datetime Values Using Calendar Rules” on page 7-18

Sequence of Datetime or Duration Values Between Endpoints with Step
Size

This example shows how to use the colon (:) operator to generate sequences of datetime
or duration values in the same way that you create regularly spaced numeric vectors.

Use Default Step Size

Create a sequence of datetime values starting from November 1, 2013 and ending on
November 5, 2013. The default step size is one calendar day.

t1 = datetime(2013,11,1,8,0,0);

t2 = datetime(2013,11,5,8,0,0);

t = t1:t2

t =

Columns 1 through 3

 01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 08:00:00

Columns 4 through 5

 04-Nov-2013 08:00:00 05-Nov-2013 08:00:00

Specify Step Size

Specify a step size of 2 calendar days using the caldays function.

t = t1:caldays(2):t2

7 Dates and Time

7-14

t =

 01-Nov-2013 08:00:00 03-Nov-2013 08:00:00 05-Nov-2013 08:00:00

Specify a step size in units other than days. Create a sequence of datetime values spaced
18 hours apart.

t = t1:hours(18):t2

t =

Columns 1 through 3

 01-Nov-2013 08:00:00 02-Nov-2013 02:00:00 02-Nov-2013 20:00:00

Columns 4 through 6

 03-Nov-2013 14:00:00 04-Nov-2013 08:00:00 05-Nov-2013 02:00:00

Use the years, days, minutes, and seconds functions to create datetime and duration
sequences using other fixed-length date and time units. Create a sequence of duration
values between 0 and 3 minutes, incremented by 30 seconds.

d = 0:seconds(30):minutes(3)

d =

 0 mins 0.5 mins 1 min 1.5 mins 2 mins 2.5 mins 3 mins

Compare Fixed-Length Duration and Calendar Duration Step Sizes

Assign a time zone to t1 and t2. In the America/New_York time zone, t1 now occurs
just before a daylight saving time change.

t1.TimeZone = 'America/New_York';

t2.TimeZone = 'America/New_York';

If you create the sequence using a step size of one calendar day, then the difference
between successive datetime values is not always 24 hours.

 Generate Sequence of Dates and Time

7-15

t = t1:t2;

dt = diff(t)

dt =

 24:00:00 25:00:00 24:00:00 24:00:00

Create a sequence of datetime values spaced one fixed-length day apart,

t = t1:days(1):t2

t =

Columns 1 through 3

 01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 07:00:00

Columns 4 through 5

 04-Nov-2013 07:00:00 05-Nov-2013 07:00:00

Verify that the difference between successive datetime values is 24 hours.

dt = diff(t)

dt =

 24:00:00 24:00:00 24:00:00 24:00:00

Integer Step Size

If you specify a step size in terms of an integer, it is interpreted as a number of 24-hour
days.

t = t1:1:t2

t =

Columns 1 through 3

7 Dates and Time

7-16

 01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 07:00:00

Columns 4 through 5

 04-Nov-2013 07:00:00 05-Nov-2013 07:00:00

Add Duration or Calendar Duration to Create Sequence of Dates

This example shows how to add a duration or calendar duration to a datetime to create a
sequence of datetime values.

Create a datetime scalar representing November 1, 2013 at 8:00 AM.

t1 = datetime(2013,11,1,8,0,0);

Add a sequence of fixed-length hours to the datetime.

t = t1 + hours(0:2)

t =

 01-Nov-2013 08:00:00 01-Nov-2013 09:00:00 01-Nov-2013 10:00:00

Add a sequence of calendar months to the datetime.

t = t1 + calmonths(1:5)

t =

Columns 1 through 3

 01-Dec-2013 08:00:00 01-Jan-2014 08:00:00 01-Feb-2014 08:00:00

Columns 4 through 5

 01-Mar-2014 08:00:00 01-Apr-2014 08:00:00

Each datetime in t occurs on the first day of each month.

 Generate Sequence of Dates and Time

7-17

Verify that the dates in t are spaced 1 month apart.

dt = caldiff(t)

dt =

 1mo 1mo 1mo 1mo

Determine the number of days between each date.

dt = caldiff(t,'days')

dt =

 31d 31d 28d 31d

Add a number of calendar months to the date, January 31, 2014, to create a sequence of
dates that fall on the last day of each month.

t = datetime(2014,1,31) + calmonths(0:11)

t =

Columns 1 through 5

 31-Jan-2014 28-Feb-2014 31-Mar-2014 30-Apr-2014 31-May-2014

Columns 6 through 10

 30-Jun-2014 31-Jul-2014 31-Aug-2014 30-Sep-2014 31-Oct-2014

Columns 11 through 12

 30-Nov-2014 31-Dec-2014

Specify Length and Endpoints of Date or Duration Sequence

This example shows how to use the linspace function to create equally spaced datetime
or duration values between two specified endpoints.

7 Dates and Time

7-18

Create a sequence of five equally spaced dates between April 14, 2014 and August 4,
2014. First, define the endpoints.

A = datetime(2014,04,14);

B = datetime(2014,08,04);

The third input to linspace specifies the number of linearly spaced points to generate
between the endpoints.

C = linspace(A,B,5)

C =

 14-Apr-2014 12-May-2014 09-Jun-2014 07-Jul-2014 04-Aug-2014

Create a sequence of six equally spaced durations between 1 and 5.5 hours.

A = duration(1,0,0);

B = duration(5,30,0);

C = linspace(A,B,6)

C =

 01:00:00 01:54:00 02:48:00 03:42:00 04:36:00 05:30:00

Sequence of Datetime Values Using Calendar Rules

This example shows how to use the dateshift function to generate sequences of dates
and time where each instance obeys a rule relating to a calendar unit or a unit of time.
For instance, each datetime must occur at the beginning a month, on a particular day of
the week, or at the end of a minute. The resulting datetime values in the sequence are
not necessarily equally spaced.

Dates on Specific Day of Week

Generate a sequence of dates consisting of the next three occurrences of Monday. First,
define today's date.

t1 = datetime('today','Format','dd-MMM-yyyy eee')

 Generate Sequence of Dates and Time

7-19

t1 =

 15-Feb-2016 Mon

The first input to dateshift is always the datetime array from which you want to
generate a sequence. Specify 'dayofweek' as the second input to indicate that the
datetime values in the output sequence must fall on a specific day of the week.

t = dateshift(t1,'dayofweek','Monday',1:3)

t =

 15-Feb-2016 Mon 22-Feb-2016 Mon 29-Feb-2016 Mon

Dates at Start of Month

Generate a sequence of start-of-month dates beginning with April 1, 2014. Specify
'start' as the second input to dateshift to indicate that all datetime values in the
output sequence should fall at the start of a particular unit of time. The third input
argument defines the unit of time, in this case, month. The last input to dateshift
can be an array of integer values that specifies how t1 should be shifted. In this case, 0
corresponds to the start of the current month, and 4 corresponds to the start of the fourth
month from t1.

t1 = datetime(2014,04,01);

t = dateshift(t1,'start','month',0:4)

t =

 01-Apr-2014 01-May-2014 01-Jun-2014 01-Jul-2014 01-Aug-2014

Dates at End of Month

Generate a sequence of end-of-month dates beginning with April 1, 2014.

t1 = datetime(2014,04,01);

t = dateshift(t1,'end','month',0:2)

t =

7 Dates and Time

7-20

 30-Apr-2014 31-May-2014 30-Jun-2014

Determine the number of days between each date.

dt = caldiff(t,'days')

dt =

 31d 30d

The dates are not equally spaced.

Other Units of Dates and Time

You can specify other units of time such as week, day, and hour.

t1 = datetime('now')

t1 =

 15-Feb-2016 16:25:36

t = dateshift(t1,'start','hour',0:4)

t =

Columns 1 through 3

 15-Feb-2016 16:00:00 15-Feb-2016 17:00:00 15-Feb-2016 18:00:00

Columns 4 through 5

 15-Feb-2016 19:00:00 15-Feb-2016 20:00:00

Previous Occurences of Dates and Time

Generate a sequence of datetime values beginning with the previous hour. Negative
integers in the last input to dateshift correspond to datetime values earlier than t1.

 Generate Sequence of Dates and Time

7-21

t = dateshift(t1,'start','hour',-1:1)

t =

 15-Feb-2016 15:00:00 15-Feb-2016 16:00:00 15-Feb-2016 17:00:00

See Also
dateshift | linspace

7 Dates and Time

7-22

Share Code and Data Across Locales

In this section...

“Write Locale-Independent Date and Time Code” on page 7-22
“Write Dates in Other Languages” on page 7-23
“Read Dates in Other Languages” on page 7-24

Write Locale-Independent Date and Time Code

Follow these best practices when sharing code that handles dates and time with
MATLAB® users in other locales. These practices ensure that the same code produces
the same output display and that output files containing dates and time are read
correctly on systems in different countries or with different language settings.

Create language-independent datetime values. That is, create datetime values that use
month numbers rather than month names, such as 01 instead of January. Avoid using
day of week names.

For example, do this:

t = datetime('today','Format','yyyy-MM-dd')

t =

 2016-02-15

instead of this:

t = datetime('today','Format','eeee, dd-MMM-yyyy')

t =

 Monday, 15-Feb-2016

Display the hour using 24-hour clock notation rather than 12-hour clock notation. Use
the 'HH' identifiers when specifying the display format for datetime values.

For example, do this:

 Share Code and Data Across Locales

7-23

t = datetime('now','Format','HH:mm')

t =

 16:18

instead of this:

t = datetime('now','Format','hh:mm a')

t =

 04:18 PM

When specifying the display format for time zone information, use the Z or X identifiers
instead of the lowercase z to avoid the creation of time zone names that might not be
recognized in other languages or regions.

Assign a time zone to t.

t.TimeZone = 'America/New_York';

Specify a language-independent display format that includes a time zone.

t.Format = 'dd-MM-yyyy Z'

t =

 15-02-2016 -0500

If you share files but not code, you do not need to write locale-independent code while you
work in MATLAB. However, when you write to a file, ensure that any text representing
dates and times is language-independent. Then, other MATLAB users can read the files
easily without having to specify a locale in which to interpret date and time data.

Write Dates in Other Languages

Specify an appropriate format for text representing dates and times when you use the
char or cellstr functions. For example, convert two datetime values to a cell array of

7 Dates and Time

7-24

character vectors using cellstr. Specify the format and the locale to represent the day,
month, and year of each datetime value as text.

t = [datetime('today');datetime('tomorrow')]

t =

 15-Feb-2016

 16-Feb-2016

S = cellstr(t,'dd. MMMM yyyy','de_DE')

S =

 '15. Februar 2016'

 '16. Februar 2016'

S is a cell array of character vectors representing dates in German. You can export S to a
text file to use with systems in the de_DE locale.

Read Dates in Other Languages

You can read text files containing dates and time in a language other than the language
that MATLAB uses, which depends on your system locale. Use the textscan or
readtable functions with the DateLocale name-value pair argument to specify the
locale in which the function interprets the dates in the file. In addition, you might need
to specify the character encoding of a file that contains characters that are not recognized
by your computer's default encoding.

• When reading text files using the textscan function, specify the file encoding when
opening the file with fopen. The encoding is the fourth input argument to fopen.

• When reading text files using the readtable function, use the FileEncoding name-
value pair argument to specify the character encoding associated with the file.

See Also
cellstr | char | datetime | readtable | textscan

 Extract or Assign Date and Time Components of Datetime Array

7-25

Extract or Assign Date and Time Components of Datetime Array

This example shows two ways to extract date and time components from existing
datetime arrays: accessing the array properties or calling a function. Then, the example
shows how to modify the date and time components by modifying the array properties.

Access Properties to Retrieve Date and Time Component

Create a datetime array.

t = datetime('now') + calyears(0:2) + calmonths(0:2) + hours(20:20:60)

t =

 16-Feb-2016 11:05:02 17-Mar-2017 07:05:02 18-Apr-2018 03:05:02

Get the year values of each datetime in the array. Use dot notation to access the Year
property of t.

t_years = t.Year

t_years =

 2016 2017 2018

The output, t_years, is a numeric array.

Get the month values of each datetime in t by accessing the Month property.

t_months = t.Month

t_months =

 2 3 4

You can retrieve the day, hour, minute, and second components of each datetime in t by
accessing the Hour, Minute, and Second properties, respectively.

7 Dates and Time

7-26

Use Functions to Retrieve Date and Time Component

Use the month function to get the month number for each datetime in t. Using functions
is an alternate way to retrieve specific date or time components of t.

m = month(t)

m =

 2 3 4

Use the month function rather than the Month property to get the full month names of
each datetime in t.

m = month(t,'name')

m =

 'February' 'March' 'April'

You can retrieve the year, quarter, week, day, hour, minute, and second components
of each datetime in t using the year, quarter, week, hour, minute, and second
functions, respectively.

Get the week of year numbers for each datetime in t.

w = week(t)

w =

 8 11 16

Get Multiple Date and Time Components

Use the ymd function to get the year, month, and day values of t as three separate
numeric arrays.

[y,m,d] = ymd(t)

 Extract or Assign Date and Time Components of Datetime Array

7-27

y =

 2016 2017 2018

m =

 2 3 4

d =

 16 17 18

Use the hms function to get the hour, minute, and second values of t as three separate
numeric arrays.

[h,m,s] = hms(t)

h =

 11 7 3

m =

 5 5 5

s =

 2.5190 2.5190 2.5190

Modify Date and Time Components

Assign new values to components in an existing datetime array by modifying the
properties of the array. Use dot notation to access a specific property.

Change the year number of all datetime values in t to 2014. Use dot notation to modify
the Year property.

7 Dates and Time

7-28

t.Year = 2014

t =

 16-Feb-2014 11:05:02 17-Mar-2014 07:05:02 18-Apr-2014 03:05:02

Change the months of the three datetime values in t to January, February, and March,
respectively. You must specify the new value as a numeric array.

t.Month = [1,2,3]

t =

 16-Jan-2014 11:05:02 17-Feb-2014 07:05:02 18-Mar-2014 03:05:02

Set the time zone of t by assigning a value to the TimeZone property.

t.TimeZone = 'Europe/Berlin';

Change the display format of t to display only the date, and not the time information.

t.Format = 'dd-MMM-yyyy'

t =

 16-Jan-2014 17-Feb-2014 18-Mar-2014

If you assign values to a datetime component that are outside the conventional range,
MATLAB® normalizes the components. The conventional range for day of month
numbers is from 1 to 31. Assign day values that exceed this range.

t.Day = [-1 1 32]

t =

 30-Dec-2013 01-Feb-2014 01-Apr-2014

 Extract or Assign Date and Time Components of Datetime Array

7-29

The month and year numbers adjust so that all values remain within the conventional
range for each date component. In this case, January -1, 2014 converts to December 30,
2013.

See Also
datetime Properties | hms | week | ymd

7 Dates and Time

7-30

Combine Date and Time from Separate Variables

This example shows how to read date and time data from a text file. Then, it shows how
to combine date and time information stored in separate variables into a single datetime
variable.

Create a space-delimited text file named schedule.txt that contains the following (to
create the file, use any text editor, and copy and paste):

Date Name Time

10.03.2015 Joe 14:31

10.03.2015 Bob 15:33

11.03.2015 Bob 11:29

12.03.2015 Kim 12:09

12.03.2015 Joe 13:05

Read the file using the readtable function. Use the %D conversion specifier to read the
first and third columns of data as datetime values.

T = readtable('schedule.txt','Format','%{dd.MM.uuuu}D %s %{HH:mm}D','Delimiter',' ')

T =

 Date Name Time

 __________ _____ _____

 10.03.2015 'Joe' 14:31

 10.03.2015 'Bob' 15:33

 11.03.2015 'Bob' 11:29

 12.03.2015 'Kim' 12:09

 12.03.2015 'Joe' 13:05

readtable returns a table containing three variables.

Change the display format for the T.Date and T.Time variables to view both date and
time information. Since the data in the first column of the file ("Date") have no time
information, the time of the resulting datetime values in T.Date default to midnight.
Since the data in the third column of the file ("Time") have no associated date, the date of
the datetime values in T.Time defaults to the current date.

T.Date.Format = 'dd.MM.uuuu HH:mm';

T.Time.Format = 'dd.MM.uuuu HH:mm';

T

T =

 Date Name Time

 Combine Date and Time from Separate Variables

7-31

 ________________ _____ ________________

 10.03.2015 00:00 'Joe' 12.12.2014 14:31

 10.03.2015 00:00 'Bob' 12.12.2014 15:33

 11.03.2015 00:00 'Bob' 12.12.2014 11:29

 12.03.2015 00:00 'Kim' 12.12.2014 12:09

 12.03.2015 00:00 'Joe' 12.12.2014 13:05

Combine the date and time information from two different table variables by adding
T.Date and the time values in T.Time. Extract the time information from T.Time using
the timeofday function.

myDatetime = T.Date + timeofday(T.Time)

myDatetime =

 10.03.2015 14:31

 10.03.2015 15:33

 11.03.2015 11:29

 12.03.2015 12:09

 12.03.2015 13:05

See Also
readtable | timeofday

7 Dates and Time

7-32

Date and Time Arithmetic

This example shows how to add and subtract date and time values to calculate future
and past dates and elapsed durations in exact units or calendar units. You can add,
subtract, multiply, and divide date and time arrays in the same way that you use these
operators with other MATLAB® data types. However, there is some behavior that is
specific to dates and time.

Add and Subtract Durations to Datetime Array

Create a datetime scalar. By default, datetime arrays are not associated wtih a time
zone.

t1 = datetime('now')

t1 =

 15-Feb-2016 15:47:20

Find future points in time by adding a sequence of hours.

t2 = t1 + hours(1:3)

t2 =

 15-Feb-2016 16:47:20 15-Feb-2016 17:47:20 15-Feb-2016 18:47:20

Verify that the difference between each pair of datetime values in t2 is 1 hour.

dt = diff(t2)

dt =

 01:00:00 01:00:00

diff returns durations in terms of exact numbers of hours, minutes, and seconds.

Subtract a sequence of minutes from a datetime to find past points in time.

 Date and Time Arithmetic

7-33

t2 = t1 - minutes(20:10:40)

t2 =

 15-Feb-2016 15:27:20 15-Feb-2016 15:17:20 15-Feb-2016 15:07:20

Add a numeric array to a datetime array. MATLAB® treats each value in the numeric
array as a number of exact, 24-hour days.

t2 = t1 + [1:3]

t2 =

 16-Feb-2016 15:47:20 17-Feb-2016 15:47:20 18-Feb-2016 15:47:20

Add to Datetime with Time Zone

If you work with datetime values in different time zones, or if you want to account for
daylight saving time changes, work with datetime arrays that are associated with time
zones. Create a datetime scalar representing March 8, 2014 in New York.

t1 = datetime(2014,3,8,0,0,0,'TimeZone','America/New_York')

t1 =

 08-Mar-2014 00:00:00

Find future points in time by adding a sequence of fixed-length (24-hour) days.

t2 = t1 + days(0:2)

t2 =

 08-Mar-2014 00:00:00 09-Mar-2014 00:00:00 10-Mar-2014 01:00:00

Because a daylight saving time shift occurred on March 9, 2014, the third datetime in t2
does not occur at midnight.

7 Dates and Time

7-34

Verify that the difference between each pair of datetime values in t2 is 24 hours.

dt = diff(t2)

dt =

 24:00:00 24:00:00

You can add fixed-length durations in other units such as years, hours, minutes, and
seconds by adding the outputs of the years, hours, minutes, and seconds functions,
respectively.

To account for daylight saving time changes, you should work with calendar durations
instead of durations. Calendar durations account for daylight saving time shifts when
they are added to or subtracted from datetime values.

Add a number of calendar days to t1.

t3 = t1 + caldays(0:2)

t3 =

 08-Mar-2014 00:00:00 09-Mar-2014 00:00:00 10-Mar-2014 00:00:00

View that the difference between each pair of datetime values in t3 is not always 24
hours due to the daylight saving time shift that occurred on March 9.

dt = diff(t3)

dt =

 24:00:00 23:00:00

Add Calendar Durations to Datetime Array

Add a number of calendar months to January 31, 2014.

t1 = datetime(2014,1,31)

 Date and Time Arithmetic

7-35

t1 =

 31-Jan-2014

t2 = t1 + calmonths(1:4)

t2 =

 28-Feb-2014 31-Mar-2014 30-Apr-2014 31-May-2014

Each datetime in t2 occurs on the last day of each month.

Calculate the difference between each pair of datetime values in t2 in terms of a number
of calendar days using the caldiff function.

dt = caldiff(t2,'days')

dt =

 31d 30d 31d

The number of days between successive pairs of datetime values in dt is not always the
same because different months consist of a different number of days.

Add a number of calendar years to January 31, 2014.

t2 = t1 + calyears(0:4)

t2 =

 31-Jan-2014 31-Jan-2015 31-Jan-2016 31-Jan-2017 31-Jan-2018

Calculate the difference between each pair of datetime values in t2 in terms of a number
of calendar days using the caldiff function.

dt = caldiff(t2,'days')

dt =

7 Dates and Time

7-36

 365d 365d 366d 365d

The number of days between successive pairs of datetime values in dt is not always the
same because 2016 is a leap year and has 366 days.

You can use the calquarters, calweeks, and caldays functions to create arrays of
calendar quarters, calendar weeks, or calendar days that you add to or subtract from
datetime arrays.

Adding calendar durations is not commutative. When you add more than one
calendarDuration array to a datetime, MATLAB® adds them in the order in which
they appear in the command.

Add 3 calendar months followed by 30 calendar days to January 31, 2014.

t2 = datetime(2014,1,31) + calmonths(3) + caldays(30)

t2 =

 30-May-2014

First add 30 calendar days to the same date, and then add 3 calendar months. The result
is not the same because when you add a calendar duration to a datetime, the number of
days added depends on the original date.

t2 = datetime(2014,1,31) + caldays(30) + calmonths(3)

t2 =

 02-Jun-2014

Calendar Duration Arithmetic

Create two calendar durations and then find their sum.

d1 = calyears(1) + calmonths(2) + caldays(20)

d1 =

 Date and Time Arithmetic

7-37

 1y 2mo 20d

d2 = calmonths(11) + caldays(23)

d2 =

 11mo 23d

d = d1 + d2

d =

 2y 1mo 43d

When you sum two or more calendar durations, a number of months greater than 12
roll over to a number of years. However, a large number of days does not roll over to a
number of months, because different months consist of different numbers of days.

Increase d by multiplying it by a factor of 2. Calendar duration values must be integers,
so you can multiply them only by integer values.

2*d

ans =

 4y 2mo 86d

Calculate Elapsed Time in Exact Units

Subtract one datetime array from another to calculate elapsed time in terms of an exact
number of hours, minutes, and seconds.

Find the exact length of time between a sequence of datetime values and the start of the
previous day.

t2 = datetime('now') + caldays(1:3)

7 Dates and Time

7-38

t2 =

 16-Feb-2016 15:47:21 17-Feb-2016 15:47:21 18-Feb-2016 15:47:21

t1 = datetime('yesterday')

t1 =

 14-Feb-2016

dt = t2 - t1

dt =

 63:47:21 87:47:21 111:47:21

whos dt

 Name Size Bytes Class Attributes

 dt 1x3 144 duration

dt contains durations in the format, hours:minutes:seconds.

View the elapsed durations in units of days by changing the Format property of dt.

dt.Format = 'd'

dt =

 2.6579 days 3.6579 days 4.6579 days

Scale the duration values by multiplying dt by a factor of 1.2. Because durations have an
exact length, you can multiply and divide them by fractional values.

dt2 = 1.2*dt

 Date and Time Arithmetic

7-39

dt2 =

 3.1895 days 4.3895 days 5.5895 days

Calculate Elapsed Time in Calendar Units

Use the between function to find the number of calendar years, months, and days
elapsed between two dates.

t1 = datetime('today')

t1 =

 15-Feb-2016

t2 = t1 + calmonths(0:2) + caldays(4)

t2 =

 19-Feb-2016 19-Mar-2016 19-Apr-2016

dt = between(t1,t2)

dt =

 4d 1mo 4d 2mo 4d

See Also
between | caldiff | diff

7 Dates and Time

7-40

Compare Dates and Time

This example shows how to compare datetime and duration arrays. You can perform
an element-by-element comparison of values in two datetime arrays or two duration
arrays using relational operators, such as > and <.

Compare Datetime Arrays

Compare two datetime arrays. The arrays must be the same size or one can be a scalar.

A = datetime(2013,07,26) + calyears(0:2:6)

B = datetime(2014,06,01)

A =

 26-Jul-2013 26-Jul-2015 26-Jul-2017 26-Jul-2019

B =

 01-Jun-2014

A < B

ans =

 1 0 0 0

The < operator returns logical 1 (true) where a datetime in A occurs before a datetime in
B.

Compare a datetime array to text representing a date.

A >= 'September 26, 2014'

ans =

 0 1 1 1

 Compare Dates and Time

7-41

Comparisons of datetime arrays account for the time zone information of each array.

Compare September 1, 2014 at 4:00 p.m. in Los Angeles with 5:00 p.m. on the same day
in New York.

A = datetime(2014,09,01,16,0,0,'TimeZone','America/Los_Angeles',...

 'Format','dd-MMM-yyyy HH:mm:ss Z')

A =

 01-Sep-2014 16:00:00 -0700

B = datetime(2014,09,01,17,0,0,'TimeZone','America/New_York',...

 'Format','dd-MMM-yyyy HH:mm:ss Z')

B =

 01-Sep-2014 17:00:00 -0400

A < B

ans =

 0

4:00 p.m. in Los Angeles occurs after 5:00 p.m. on the same day in New York.

Compare Durations

Compare two duration arrays.

A = duration([2,30,30;3,15,0])

B = duration([2,40,0;2,50,0])

A =

 02:30:30

 03:15:00

7 Dates and Time

7-42

B =

 02:40:00

 02:50:00

A >= B

ans =

 0

 1

Compare a duration array to a numeric array. Elements in the numeric array are treated
as a number of fixed-length (24-hour) days.

A < [1; 1/24]

ans =

 1

 0

Determine if Dates and Time Are Contained Within an Interval

Use the isbetween function to determine whether values in a datetime array lie
within a closed interval.

Define endpoints of an interval.

tlower = datetime(2014,08,01)

tupper = datetime(2014,09,01)

tlower =

 01-Aug-2014

tupper =

 Compare Dates and Time

7-43

 01-Sep-2014

Create a datetime array and determine whether the values lie within the interval
bounded by t1 and t2.

A = datetime(2014,08,21) + calweeks(0:2)

A =

 21-Aug-2014 28-Aug-2014 04-Sep-2014

tf = isbetween(A,tlower,tupper)

tf =

 1 1 0

See Also
isbetween

More About
• “Array Comparison with Relational Operators” on page 2-7

7 Dates and Time

7-44

Plot Dates and Durations

This example shows how to create line and scatter plots of datetime and duration values
using the plot function. Then, it shows how to convert datetime and duration values to
numeric values to create other types of plots.

Line Plot with Dates

Create a line plot with datetime values on the x-axis.

Define t as a sequence of dates.

t = datetime(2014,6,28) + caldays(1:10);

Define y as random data. Then, plot the vectors using the plot function.

y = rand(1,10);

plot(t,y);

 Plot Dates and Durations

7-45

By default, plot chooses tick mark locations based on the range of data. When you zoom
in and out of a plot, the tick labels automatically adjust to the new axis limits.

Replot the data and specify a format for the datetime tick labels, using the
DatetimeTickFormat name-value pair argument.

plot(t,y,'DatetimeTickFormat','dd-MMM-yyyy')

7 Dates and Time

7-46

When you specify a value for the DatetimeTickFormat argument, plot always formats
the tick labels according to the specified value.

Line Plot with Durations

Create a line plot with duration values on the x-axis.

Define t as seven linearly spaced duration values between 0 and 3 minutes. Define y as a
vector of random data.

t = 0:seconds(30):minutes(3);

y = rand(1,7);

 Plot Dates and Durations

7-47

Plot the data and specify the format of the duration tick marks in terms of a single unit,
seconds.

h = plot(t,y,'DurationTickFormat','s');

View the x-axis limits

xlim

ans =

 0 180

7 Dates and Time

7-48

The x-axis limits are stored as numeric values in units of seconds.

Change the format of the duration tick marks by replotting the same data. Specify the
format of the duration tick marks in the form of a digital timer that includes more than
one unit.

figure

h = plot(t,y,'DurationTickFormat','mm:ss');

View the x-axis limits

xlim

ans =

 Plot Dates and Durations

7-49

 -0.0000 0.0021

The x-axis limits are stored in units of 24-hour days when the duration tick format is not
a single unit.

Change Axis Limits

Plot dates and random data.

t = datetime(2014,6,28) + calweeks(1:10);

y = rand(1,10);

plot(t,y);

7 Dates and Time

7-50

View the x-axis limits

format longG

xlim

ans =

 735781.8 735850.3

The axis limits for datetime values are stored as serial date numbers.

Change the x-axis limits by specifying the new bounds in terms of serial date numbers.
Use the datenum function to create serial date numbers.

xmin = datenum(2014,7,14)

xmin =

 735794

xmax = datenum(2014,8,23)

xmax =

 735834

Specify the new x-axis limits using the xlim function.

xlim([xmin xmax])

 Plot Dates and Durations

7-51

Properties Stored as Numeric Values

In addition to axis limits, the locations of tick labels and the x-, y-, and z-values for dates
and durations in line plots are also stored as numeric values. The following properties
represent these aspects of line plots.

• XData, YData, ZData
• XLim, YLim, ZLim
• XTick, YTick, ZYTick

7 Dates and Time

7-52

Scatter Plot

Create a scatter plot with datetime or duration inputs using the plot function. The
scatter function does not accept datetime and duration inputs.

Use the plot function to create a scatter plot, specifying the marker symbol, 'o'.

t = datetime('today') + caldays(1:100);

y = linspace(10,40,100) + 10*rand(1,100);

plot(t,y,'o')

 Plot Dates and Durations

7-53

Other Plot Types

Other MATLAB plotting functions do not accept datetime and duration inputs. Convert
datetime and duration values to numeric values before plotting them using a function
other than plot.

Convert the datetime values in t to numeric values by subtracting a datetime origin.

dt = t - datetime(2010,9,1);

dt is a duration array. Convert dt to a double array of values in units of years,
days, hours, minutes, or seconds using the years, days, hours, minutes, or seconds
function, respectively.

x = days(dt);

whos x

 Name Size Bytes Class Attributes

 x 1x100 800 double

Plot x using the bar function, which accepts double inputs.

bar(x,y)

7 Dates and Time

7-54

See Also
datetime | plot

 Core Functions Supporting Date and Time Arrays

7-55

Core Functions Supporting Date and Time Arrays

Many functions in MATLAB operate on date and time arrays in much the same way that
they operate on other arrays.

This table lists notable MATLAB functions that operate on datetime, duration, and
calendarDuration arrays in addition to other arrays.

size

length

ndims

numel

isrow

iscolumn

cat

horzcat

vertcat

permute

reshape

transpose

ctranspose

linspace

isequal

isequaln

eq

ne

lt

le

ge

gt

sort

sortrows

issorted

intersect

ismember

setdiff

setxor

unique

union

abs

floor

ceil

round

min

max

mean

median

mode

plus

minus

uminus

times

rdivide

ldivide

mtimes

mrdivide

mldivide

diff

sum

plot

char

cellstr

7 Dates and Time

7-56

Convert Between Datetime Arrays, Numbers, and Strings

In this section...

“Overview” on page 7-56
“Convert Between Datetime and Strings” on page 7-57
“Convert Between Datetime and Date Vectors” on page 7-58
“Convert Serial Date Numbers to Datetime” on page 7-59
“Convert Datetime Arrays to Numeric Values” on page 7-59

Overview

datetime is the best data type for representing points in time. datetime values have
flexible display formats and up to nanosecond precision, and can account for time zones,
daylight saving time, and leap seconds. However, if you work with code authored in
MATLAB R2014a or earlier, or if you share code with others who use such a version, you
might need to work with dates and time stored in one of these three formats:

• Date String — A character vector.

Example: Thursday, August 23, 2012 9:45:44.946 AM

• Date Vector — A 1-by-6 numeric vector containing the year, month, day, hour,
minute, and second.

Example: [2012 8 23 9 45 44.946]

• Serial Date Number — A single number equal to the number of days since January 0,
0000 in the proleptic ISO calendar. Serial date numbers are useful as inputs to some
MATLAB functions that do not accept the datetime or duration data types.

Example: 7.3510e+005

Date strings, vectors, and numbers can be stored as arrays of values. Store multiple date
strings in a cell array, multiple date vectors in an m-by-6 matrix, and multiple serial date
numbers in a matrix.

You can convert any of these formats to a datetime array using the datetime function.
If your existing MATLAB code expects a serial date number or date vector, use the
datenum or datevec functions, respectively, to convert a datetime array to the
expected data format. To convert a datetime array to text, use the char or cellstr
functions.

 Convert Between Datetime Arrays, Numbers, and Strings

7-57

Convert Between Datetime and Strings

A date string is a character vector composed of fields related to a specific date and/or
time. There are several ways to represent dates and times in text format. For example,
all of the following are character vectors representing August 23, 2010 at 04:35:42 PM:

'23-Aug-2010 04:35:06 PM'

'Wednesday, August 23'

'08/23/10 16:35'

'Aug 23 16:35:42.946'

A date string includes characters that separate the fields, such as the hyphen, space, and
colon used here:

d = '23-Aug-2010 16:35:42'

Convert one or more date strings to a datetime array using the datetime function. For
best performance, specify the format of the input date strings as an input to datetime.

Note: The specifiers that datetime uses to describe date and time formats differ from
the specifiers that the datestr, datevec, and datenum functions accept.

t = datetime(d,'InputFormat','dd-MMM-yyyy HH:mm:ss')

t =

 23-Aug-2010 16:35:42

Although the date string, d, and the datetime scalar, t, look similar, they are not equal.
View the size and data type of each variable.

whos d t

 Name Size Bytes Class Attributes

 d 1x20 40 char

 t 1x1 121 datetime

Convert a datetime array to a character vector using char or cellstr. For example,
convert the current date and time to a timestamp to append to a file name.

t = datetime('now','Format','yyyy-MM-dd''T''HHmmss')

7 Dates and Time

7-58

t =

 2015-07-17T154220

S = char(t);

filename = ['myTest_',S]

filename =

myTest_2015-07-17T154220

Convert Between Datetime and Date Vectors

A date vector is a 1-by-6 vector of double-precision numbers. Elements of a date vector
are integer-valued, except for the seconds element, which can be fractional. Time values
are expressed in 24-hour notation. There is no AM or PM setting.

A date vector is arranged in the following order:

year month day hour minute second

The following date vector represents 10:45:07 AM on October 24, 2012:

[2012 10 24 10 45 07]

Convert one or more date vectors to a datetime array using the datetime function:

t = datetime([2012 10 24 10 45 07])

t =

 24-Oct-2012 10:45:07

Instead of using datevec to extract components of datetime values, use functions such
as year, month, and day instead:

y = year(t)

y =

 2012

Alternatively, access the corresponding property, such as t.Year for year values:

y = t.Year

 Convert Between Datetime Arrays, Numbers, and Strings

7-59

y =

 2012

Convert Serial Date Numbers to Datetime

A serial date number represents a calendar date as the number of days that has passed
since a fixed base date. In MATLAB, serial date number 1 is January 1, 0000.

Serial time can represent fractions of days beginning at midnight; for example, 6 p.m.
equals 0.75 serial days. So the character vector '31-Oct-2003, 6:00 PM' in MATLAB
is date number 731885.75.

Convert one or more serial date numbers to a datetime array using the datetime
function. Specify the type of date number that is being converted:

t = datetime(731885.75,'ConvertFrom','datenum')

t =

 31-Oct-2003 18:00:00

Convert Datetime Arrays to Numeric Values

Some MATLAB functions accept numeric data types but not datetime values as
inputs. To apply these functions to your date and time data, convert datetime values
to meaningful numeric values. Then, call the function. For example, the log function
accepts double inputs, but not datetime inputs. Suppose that you have a datetime
array of dates spanning the course of a research study or experiment.

t = datetime(2014,6,18) + calmonths(1:4)

t =

 18-Jul-2014 18-Aug-2014 18-Sep-2014 18-Oct-2014

Subtract the origin value. For example, the origin value might be the starting day of an
experiment.

dt = t - datetime(2014,7,1)

dt =

 408:00:00 1152:00:00 1896:00:00 2616:00:00

7 Dates and Time

7-60

dt is a duration array. Convert dt to a double array of values in units of years,
days, hours, minutes, or seconds using the years, days, hours, minutes, or seconds
function, respectively.

x = hours(dt)

x =

 408 1152 1896 2616

Pass the double array as the input to the log function.

y = log(x)

y =

 6.0113 7.0493 7.5475 7.8694

See Also
cellstr | char | datenum | datetime | datevec

More About
• “Represent Dates and Times in MATLAB” on page 7-2
• “Components of Dates and Time”

 Carryover in Date Vectors and Strings

7-61

Carryover in Date Vectors and Strings

If an element falls outside the conventional range, MATLAB adjusts both that date
vector element and the previous element. For example, if the minutes element is 70,
MATLAB adjusts the hours element by 1 and sets the minutes element to 10. If the
minutes element is -15, then MATLAB decreases the hours element by 1 and sets the
minutes element to 45. Month values are an exception. MATLAB sets month values less
than 1 to 1.

In the following example, the month element has a value of 22. MATLAB increments the
year value to 2010 and sets the month to October.

datestr([2009 22 03 00 00 00])

ans =

 03-Oct-2010

The carrying forward of values also applies to time and day values in text representing
dates and times. For example, October 3, 2010 and September 33, 2010 are interpreted to
be the same date, and correspond to the same serial date number.

datenum('03-Oct-2010')

ans =

 734414

datenum('33-Sep-2010')

ans =

 734414

The following example takes the input month (07, or July), finds the last day of the
previous month (June 30), and subtracts the number of days in the field specifier (5 days)
from that date to yield a return date of June 25, 2010.

datestr([2010 07 -05 00 00 00])

ans =

 25-Jun-2010

7 Dates and Time

7-62

Converting Date Vector Returns Unexpected Output

Because a date vector is a 1-by-6 vector of numbers, datestr might interpret your input
date vectors as vectors of serial date numbers, or vice versa, and return unexpected
output.

Consider a date vector that includes the year 3000. This year is outside the range of
years that datestr interprets as elements of date vectors. Therefore, the input is
interpreted as a 1-by-6 vector of serial date numbers:

datestr([3000 11 05 10 32 56])

ans =

18-Mar-0008

11-Jan-0000

05-Jan-0000

10-Jan-0000

01-Feb-0000

25-Feb-0000

Here datestr interprets 3000 as a serial date number, and converts it to the date string
'18-Mar-0008'. Also, datestr converts the next five elements to date strings.

When converting such a date vector to a character vector, first convert it to a serial date
number using datenum. Then, convert the date number to a character vector using
datestr:

dn = datenum([3000 11 05 10 32 56]);

ds = datestr(dn)

ds =

05-Nov-3000 10:32:56

When converting dates to character vectors, datestr interprets input as either date
vectors or serial date numbers using a heuristic rule. Consider an m-by-6 matrix.
datestr interprets the matrix as m date vectors when:

• The first five columns contain integers.
• The absolute value of the sum of each row is in the range 1500–2500.

 Converting Date Vector Returns Unexpected Output

7-63

If either condition is false, for any row, then datestr interprets the m-by-6 matrix as m-
by-6 serial date numbers.

Usually, dates with years in the range 1700–2300 are interpreted as date vectors.
However, datestr might interpret rows with month, day, hour, minute, or second values
outside their normal ranges as serial date numbers. For example, datestr correctly
interprets the following date vector for the year 2014:

datestr([2014 06 21 10 51 00])

ans =

21-Jun-2014 10:51:00

But given a day value outside the typical range (1–31), datestr returns a date for each
element of the vector:

datestr([2014 06 2110 10 51 00])

ans =

06-Jul-0005

06-Jan-0000

10-Oct-0005

10-Jan-0000

20-Feb-0000

00-Jan-0000

When you have a matrix of date vectors that datestr might interpret incorrectly as
serial date numbers, first convert the matrix to serial date numbers using datenum.
Then, use datestr to convert the date numbers.

When you have a matrix of serial date numbers that datestr might interpret as date
vectors, first convert the matrix to a column vector. Then, use datestr to convert the
column vector.

8

Categorical Arrays

• “Create Categorical Arrays” on page 8-2
• “Convert Table Variables Containing Character Vectors to Categorical” on page

8-6
• “Plot Categorical Data” on page 8-11
• “Compare Categorical Array Elements” on page 8-19
• “Combine Categorical Arrays” on page 8-22
• “Combine Categorical Arrays Using Multiplication” on page 8-26
• “Access Data Using Categorical Arrays” on page 8-29
• “Work with Protected Categorical Arrays” on page 8-37
• “Advantages of Using Categorical Arrays” on page 8-42
• “Ordinal Categorical Arrays” on page 8-45
• “Core Functions Supporting Categorical Arrays” on page 8-49

8 Categorical Arrays

8-2

Create Categorical Arrays

This example shows how to create a categorical array. categorical is a data type for
storing data with values from a finite set of discrete categories. These categories can
have a natural order, but it is not required. A categorical array provides efficient storage
and convenient manipulation of data, while also maintaining meaningful names for the
values. Categorical arrays are often used in a table to define groups of rows.

By default, categorical arrays contain categories that have no mathematical ordering.
For example, the discrete set of pet categories {'dog' 'cat' 'bird'} has no
meaningful mathematical ordering, so MATLAB® uses the alphabetical ordering
{'bird' 'cat' 'dog'}. Ordinal categorical arrays contain categories that have
a meaningful mathematical ordering. For example, the discrete set of size categories
{'small', 'medium', 'large'} has the mathematical ordering small < medium <
large.

Create Categorical Array from Cell Array of Character Vectors

You can use the categorical function to create a categorical array from a numeric
array, logical array, cell array of character vectors, or an existing categorical array.

Create a 1-by-11 cell array of character vectors containing state names from New
England.

state = {'MA','ME','CT','VT','ME','NH','VT','MA','NH','CT','RI'};

Convert the cell array, state, to a categorical array that has no mathematical order.

state = categorical(state)

class(state)

state =

 Columns 1 through 9

 MA ME CT VT ME NH VT MA NH

 Columns 10 through 11

 CT RI

 Create Categorical Arrays

8-3

ans =

categorical

List the discrete categories in the variable state.

categories(state)

ans =

 'CT'

 'MA'

 'ME'

 'NH'

 'RI'

 'VT'

The categories are listed in alphabetical order.

Create Ordinal Categorical Array from Cell Array of Character Vectors

Create a 1-by-8 cell array of character vectors containing the sizes of eight objects.

AllSizes = {'medium','large','small','small','medium',...

 'large','medium','small'};

The cell array, AllSizes, has three distinct values: 'large', 'medium', and 'small'.
With the cell array of character vectors, there is no convenient way to indicate that
small < medium < large.

Convert the cell array, AllSizes, to an ordinal categorical array. Use valueset to
specify the values small, medium, and large, which define the categories. For an
ordinal categorical array, the first category specified is the smallest and the last category
is the largest.

valueset = {'small','medium','large'};

sizeOrd = categorical(AllSizes,valueset,'Ordinal',true)

class(sizeOrd)

8 Categorical Arrays

8-4

sizeOrd =

 Columns 1 through 6

 medium large small small medium large

 Columns 7 through 8

 medium small

ans =

categorical

The order of the values in the categorical array, sizeOrd, remains unchanged.

List the discrete categories in the categorical variable, sizeOrd.

categories(sizeOrd)

ans =

 'small'

 'medium'

 'large'

The categories are listed in the specified order to match the mathematical ordering
small < medium < large.

Create Ordinal Categorical Array by Binning Numeric Data

Create a vector of 100 random numbers between zero and 50.

x = rand(100,1)*50;

Use the discretize function to create a categorical array by binning the values of x.
Put all values between zero and 15 in the first bin, all the values between 15 and 35 in
the second bin, and all the values between 35 and 50 in the third bin. Each bin includes
the left endpoint, but does not include the right endpoint.

catnames = {'small','medium','large'};

 Create Categorical Arrays

8-5

binnedData = discretize(x,[0 15 35 50],'categorical',catnames);

binnedData is a 100-by-1 ordinal categorical array with three categories, such that
small < medium < large.

Use the summary function to print the number of elements in each category.

summary(binnedData)

 small 30

 medium 35

 large 35

See Also
categorical | categories | discretize | summary

Related Examples
• “Convert Table Variables Containing Character Vectors to Categorical” on page

8-6
• “Access Data Using Categorical Arrays” on page 8-29
• “Compare Categorical Array Elements” on page 8-19

More About
• “Advantages of Using Categorical Arrays” on page 8-42
• “Ordinal Categorical Arrays” on page 8-45

8 Categorical Arrays

8-6

Convert Table Variables Containing Character Vectors to
Categorical

This example shows how to convert a variable in a table from a cell array of character
vectors to a categorical array.

Load Sample Data and Create a Table

Load sample data gathered from 100 patients.

load patients

whos

 Name Size Bytes Class Attributes

 Age 100x1 800 double

 Diastolic 100x1 800 double

 Gender 100x1 12212 cell

 Height 100x1 800 double

 LastName 100x1 12416 cell

 Location 100x1 15008 cell

 SelfAssessedHealthStatus 100x1 12340 cell

 Smoker 100x1 100 logical

 Systolic 100x1 800 double

 Weight 100x1 800 double

Store the patient data from Age, Gender, Height, Weight,
SelfAssessedHealthStatus, and Location in a table. Use the unique identifiers in
the variable LastName as row names.

T = table(Age,Gender,Height,Weight,...

 SelfAssessedHealthStatus,Location,...

 'RowNames',LastName);

Convert Table Variables from Cell Arrays of Character Vectors to Categorical Arrays

The cell arrays of character vectors, Gender and Location, contain small a discrete set
of unique values.

Convert Gender and Location to categorical arrays.

T.Gender = categorical(T.Gender);

 Convert Table Variables Containing Character Vectors to Categorical

8-7

T.Location = categorical(T.Location);

The variable, SelfAssessedHealthStatus, contains four unique values: Excellent,
Fair, Good, and Poor.

Convert SelfAssessedHealthStatus to an ordinal categorical array, such that the
categories have the mathematical ordering Poor < Fair < Good < Excellent.

T.SelfAssessedHealthStatus = categorical(T.SelfAssessedHealthStatus,...

 {'Poor','Fair','Good','Excellent'},'Ordinal',true);

Print a Summary

View the data type, description, units, and other descriptive statistics for each variable
by using summary to summarize the table.

format compact

summary(T)

Variables:

 Age: 100x1 double

 Values:

 min 25

 median 39

 max 50

 Gender: 100x1 categorical

 Values:

 Female 53

 Male 47

 Height: 100x1 double

 Values:

 min 60

 median 67

 max 72

 Weight: 100x1 double

 Values:

 min 111

 median 142.5

 max 202

 SelfAssessedHealthStatus: 100x1 ordinal categorical

 Values:

 Poor 11

 Fair 15

 Good 40

8 Categorical Arrays

8-8

 Excellent 34

 Location: 100x1 categorical

 Values:

 County General Hospital 39

 St. Mary's Medical Center 24

 VA Hospital 37

The table variables Gender, SelfAssessedHealthStatus, and Location are
categorical arrays. The summary contains the counts of the number of elements in each
category. For example, the summary indicates that 53 of the 100 patients are female and
47 are male.

Select Data Based on Categories

Create a subtable, T1, containing the age, height, and weight of all female patients who
were observed at County General Hospital. You can easily create a logical vector based
on the values in the categorical arrays Gender and Location.

rows = T.Location=='County General Hospital' & T.Gender=='Female';

rows is a 100-by-1 logical vector with logical true (1) for the table rows where the
gender is female and the location is County General Hospital.

Define the subset of variables.

vars = {'Age','Height','Weight'};

Use parentheses to create the subtable, T1.

T1 = T(rows,vars)

T1 =

 Age Height Weight

 ___ ______ ______

 Brown 49 64 119

 Taylor 31 66 132

 Anderson 45 68 128

 Lee 44 66 146

 Walker 28 65 123

 Young 25 63 114

 Campbell 37 65 135

 Evans 39 62 121

 Morris 43 64 135

 Rivera 29 63 130

 Convert Table Variables Containing Character Vectors to Categorical

8-9

 Richardson 30 67 141

 Cox 28 66 111

 Torres 45 70 137

 Peterson 32 60 136

 Ramirez 48 64 137

 Bennett 35 64 131

 Patterson 37 65 120

 Hughes 49 63 123

 Bryant 48 66 134

A is a 19-by-3 table.

Since ordinal categorical arrays have a mathematical ordering for their categories,
you can perform element-wise comparisons of them with relational operations, such as
greater than and less than.

Create a subtable, T2, of the gender, age, height, and weight of all patients who assessed
their health status as poor or fair.

First, define the subset of rows to include in table T2.

rows = T.SelfAssessedHealthStatus<='Fair';

Then, define the subset of variables to include in table T2.

vars = {'Gender','Age','Height','Weight'};

Use parentheses to create the subtable T2.

T2 = T(rows,vars)

T2 =

 Gender Age Height Weight

 ______ ___ ______ ______

 Johnson Male 43 69 163

 Jones Female 40 67 133

 Thomas Female 42 66 137

 Jackson Male 25 71 174

 Garcia Female 27 69 131

 Rodriguez Female 39 64 117

 Lewis Female 41 62 137

 Lee Female 44 66 146

 Hall Male 25 70 189

 Hernandez Male 36 68 166

 Lopez Female 40 66 137

8 Categorical Arrays

8-10

 Gonzalez Female 35 66 118

 Mitchell Male 39 71 164

 Campbell Female 37 65 135

 Parker Male 30 68 182

 Stewart Male 49 68 170

 Morris Female 43 64 135

 Watson Female 40 64 127

 Kelly Female 41 65 127

 Price Male 31 72 178

 Bennett Female 35 64 131

 Wood Male 32 68 183

 Patterson Female 37 65 120

 Foster Female 30 70 124

 Griffin Male 49 70 186

 Hayes Male 48 66 177

T2 is a 26-by-4 table.

Related Examples
• “Create and Work with Tables” on page 9-2
• “Create Categorical Arrays” on page 8-2
• “Access Data in a Table” on page 9-34
• “Access Data Using Categorical Arrays” on page 8-29

More About
• “Advantages of Using Categorical Arrays” on page 8-42
• “Ordinal Categorical Arrays” on page 8-45

 Plot Categorical Data

8-11

Plot Categorical Data

This example shows how to plot data from a categorical array.

Load Sample Data

Load sample data gathered from 100 patients.

load patients

whos

 Name Size Bytes Class Attributes

 Age 100x1 800 double

 Diastolic 100x1 800 double

 Gender 100x1 12212 cell

 Height 100x1 800 double

 LastName 100x1 12416 cell

 Location 100x1 15008 cell

 SelfAssessedHealthStatus 100x1 12340 cell

 Smoker 100x1 100 logical

 Systolic 100x1 800 double

 Weight 100x1 800 double

Create Categorical Arrays from Cell Arrays of Character Vectors

The workspace variable, Location, is a cell array of character vectors that contains the
three unique medical facilities where patients were observed.

To access and compare data more easily, convert Location to a categorical array.

Location = categorical(Location);

Summarize the categorical array.

summary(Location)

 County General Hospital 39

 St. Mary's Medical Center 24

 VA Hospital 37

8 Categorical Arrays

8-12

39 patients were observed at County General Hospital, 24 at St. Mary's Medical Center,
and 37 at the VA Hospital.

The workspace variable, SelfAssessedHealthStatus, contains four unique values,
Excellent, Fair, Good, and Poor.

Convert SelfAssessedHealthStatus to an ordinal categorical array, such that the
categories have the mathematical ordering Poor < Fair < Good < Excellent.

SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus,...

 {'Poor' 'Fair' 'Good' 'Excellent'},'Ordinal',true);

Summarize the categorical array, SelfAssessedHealthStatus.

summary(SelfAssessedHealthStatus)

 Poor 11

 Fair 15

 Good 40

 Excellent 34

Plot Histogram

Create a histogram bar plot directly from a categorical array.

figure

histogram(SelfAssessedHealthStatus)

title('Self Assessed Health Status From 100 Patients')

 Plot Categorical Data

8-13

The function hist accepts the categorical array, SelfAssessedHealthStatus, and
plots the category counts for each of the four categories.

Create a histogram of the hospital location for only the patients who assessed their
health as Fair or Poor.

figure

histogram(Location(SelfAssessedHealthStatus<='Fair'))

title('Location of Patients in Fair or Poor Health')

8 Categorical Arrays

8-14

Create Pie Chart

Create a pie chart directly from a categorical array.

figure

pie(SelfAssessedHealthStatus);

title('Self Assessed Health Status From 100 Patients')

 Plot Categorical Data

8-15

The function pie accepts the categorical array, SelfAssessedHealthStatus, and plots
a pie chart of the four categories.

Create Pareto Chart

Create a Pareto chart from the category counts for each of the four categories of
SelfAssessedHealthStatus.

figure

A = countcats(SelfAssessedHealthStatus);

C = categories(SelfAssessedHealthStatus);

pareto(A,C);

title('Self Assessed Health Status From 100 Patients')

8 Categorical Arrays

8-16

The first input argument to pareto must be a vector. If a categorical array is a matrix or
multidimensional array, reshape it into a vector before calling countcats and pareto.

Create Scatter Plot

Convert the cell array of character vectors to a categorical array.

Gender = categorical(Gender);

Summarize the categorical array, Gender.

summary(Gender)

 Female 53

 Plot Categorical Data

8-17

 Male 47

Gender is a 100-by-1 categorical array with two categories, Female and Male.

Use the categorical array, Gender, to access Weight and Height data for each gender
separately.

X1 = Weight(Gender=='Female');

Y1 = Height(Gender=='Female');

X2 = Weight(Gender=='Male');

Y2 = Height(Gender=='Male');

X1 and Y1 are 53-by-1 numeric arrays containing data from the female patients.

X2 and Y2 are 47-by-1 numeric arrays containing data from the male patients.

Create a scatter plot of height vs. weight. Indicate data from the female patients with a
circle and data from the male patients with a cross.

figure

h1 = scatter(X1,Y1,'o');

hold on

h2 = scatter(X2,Y2,'x');

title('Height vs. Weight')

xlabel('Weight (lbs)')

ylabel('Height (in)')

8 Categorical Arrays

8-18

See Also
bar | categorical | countcats | histogram | pie | rose | scatter | summary

Related Examples
• “Access Data Using Categorical Arrays” on page 8-29

 Compare Categorical Array Elements

8-19

Compare Categorical Array Elements

This example shows how to use relational operations with a categorical array.

Create Categorical Array from Cell Array of Character Vectors

Create a 2-by-4 cell array of character vectors.

C = {'blue' 'red' 'green' 'blue';...

 'blue' 'green' 'green' 'blue'};

colors = categorical(C)

colors =

 blue red green blue

 blue green green blue

colors is a 2-by-4 categorical array.

List the categories of the categorical array.

categories(colors)

ans =

 'blue'

 'green'

 'red'

Determine If Elements Are Equal

Use the relational operator, eq (==), to compare the first and second rows of colors.

colors(1,:) == colors(2,:)

ans =

 1 0 1 1

8 Categorical Arrays

8-20

Only the values in the second column differ between the rows.

Compare Entire Array to Character Vector

Compare the entire categorical array, colors, to the character vector 'blue' to find the
location of all blue values.

colors == 'blue'

ans =

 1 0 0 1

 1 0 0 1

There are four blue entries in colors, one in each corner of the array.

Convert to an Ordinal Categorical Array

Add a mathematical ordering to the categories in colors. Specify the category order that
represents the ordering of color spectrum, red < green < blue.

colors = categorical(colors,{'red','green' 'blue'},'Ordinal',true)

colors =

 blue red green blue

 blue green green blue

The elements in the categorical array remain the same.

List the discrete categories in colors.

categories(colors)

ans =

 'red'

 'green'

 'blue'

 Compare Categorical Array Elements

8-21

Compare Elements Based on Order

Determine if elements in the first column of colors are greater than the elements in the
second column.

colors(:,1) > colors(:,2)

ans =

 1

 1

Both values in the first column, blue, are greater than the corresponding values in the
second column, red and green.

Find all the elements in colors that are less than 'blue'.

colors < 'blue'

ans =

 0 1 1 0

 0 1 1 0

The function lt (<) indicates the location of all green and red values with 1.

See Also
categorical | categories

Related Examples
• “Access Data Using Categorical Arrays” on page 8-29

More About
• “Relational Operations”
• “Advantages of Using Categorical Arrays” on page 8-42
• “Ordinal Categorical Arrays” on page 8-45

8 Categorical Arrays

8-22

Combine Categorical Arrays

This example shows how to combine two categorical arrays.

Create Categorical Arrays

Create a categorical array, A, containing the preferred lunchtime beverage of 25 students
in classroom A.

A = gallery('integerdata',3,[25,1],1);

A = categorical(A,1:3,{'milk' 'water' 'juice'});

A is a 25-by-1 categorical array with three distinct categories: milk, water, and juice.

Summarize the categorical array, A.

summary(A)

 milk 8

 water 8

 juice 9

Eight students in classroom A prefer milk, eight prefer water, and nine prefer juice.

Create another categorical array, B, containing the preferences of 28 students in
classroom B.

B = gallery('integerdata',3,[28,1],3);

B = categorical(B,1:3,{'milk' 'water' 'juice'});

B is a 28-by-1 categorical array containing the same categories as A.

Summarize the categorical array, B.

summary(B)

 milk 12

 water 10

 juice 6

Twelve students in classroom B prefer milk, ten prefer water, and six prefer juice.

 Combine Categorical Arrays

8-23

Concatenate Categorical Arrays

Concatenate the data from classrooms A and B into a single categorical array, Group1.

Group1 = [A;B];

Summarize the categorical array, Group1

summary(Group1)

 milk 20

 water 18

 juice 15

Group1 is a 53-by-1 categorical array with three categories: milk, water, and juice.

Create Categorical Array with Different Categories

Create a categorical array, Group2, containing data from 50 students who were given the
additional beverage option of soda.

Group2 = gallery('integerdata',4,[50,1],2);

Group2 = categorical(Group2,1:4,{'juice' 'milk' 'soda' 'water'});

Summarize the categorical array, Group2.

summary(Group2)

 juice 18

 milk 10

 soda 13

 water 9

Group2 is a 50-by-1 categorical array with four categories: juice, milk, soda, and
water.

Concatenate Arrays with Different Categories

Concatenate the data from Group1 and Group2.

students = [Group1;Group2];

Summarize the resulting categorical array, students.

8 Categorical Arrays

8-24

summary(students)

 milk 30

 water 27

 juice 33

 soda 13

Concatenation appends the categories exclusive to the second input, soda, to the end of
the list of categories from the first input, milk, water, juice, soda.

Use reordercats to change the order of the categories in the categorical array,
students.

students = reordercats(students,{'juice','milk','water','soda'});

categories(students)

ans =

 'juice'

 'milk'

 'water'

 'soda'

Union of Categorical Arrays

Use the function union to find the unique responses from Group1 and Group2.

C = union(Group1,Group2)

C =

 milk

 water

 juice

 soda

union returns the combined values from Group1 and Group2 with no repetitions. In this
case, C is equivalent to the categories of the concatenation, students.

 Combine Categorical Arrays

8-25

All of the categorical arrays in this example were nonordinal. To combine ordinal
categorical arrays, they must have the same sets of categories including their order.

See Also
cat | categorical | categories | horzcat | summary | union | vertcat

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Combine Categorical Arrays Using Multiplication” on page 8-26
• “Convert Table Variables Containing Character Vectors to Categorical” on page 8-6
• “Access Data Using Categorical Arrays” on page 8-29

More About
• “Ordinal Categorical Arrays” on page 8-45

8 Categorical Arrays

8-26

Combine Categorical Arrays Using Multiplication

This example shows how to use the times function to combine categorical arrays,
including ordinal categorical arrays and arrays with undefined elements. When you call
times on two categorical arrays, the output is a categorical array with new categories.
The set of new categories is the set of all the ordered pairs created from the categories of
the input arrays, or the Cartesian product. times forms each element of the output array
as the ordered pair of the corresponding elements of the input arrays. The output array
has the same size as the input arrays.

Combine Two Categorical Arrays

Combine two categorical arrays using times. The input arrays must have the same
number of elements, but can have different numbers of categories.

A = categorical({'blue','red','green'});

B = categorical({'+','-','+'});

C = A.*B

C =

 blue + red - green +

Cartesian Product of Categories

Show the categories of C. The categories are all the ordered pairs that can be created
from the categories of A and B, also known as the Cartesian product.

categories(C)

ans =

 'blue +'

 'blue -'

 'green +'

 'green -'

 'red +'

 'red -'

As a consequence, A.*B does not equal B.*A.

 Combine Categorical Arrays Using Multiplication

8-27

D = B.*A

D =

 + blue - red + green

categories(D)

ans =

 '+ blue'

 '+ green'

 '+ red'

 '- blue'

 '- green'

 '- red'

Multiplication with Undefined Elements

Combine two categorical arrays. If either A or B have an undefined element, the
corresponding element of C is undefined.

A = categorical({'blue','red','green','black'});

B = categorical({'+','-','+','-'});

A = removecats(A,{'black'});

C = A.*B

C =

 blue + red - green + <undefined>

Cartesian Product of Ordinal Categorical Arrays

Combine two ordinal categorical arrays. C is an ordinal categorical array only if A and
B are both ordinal. The ordering of the categories of C follows from the orderings of the
input categorical arrays.

A = categorical({'blue','red','green'},{'green','red','blue'},'Ordinal',true);

B = categorical({'+','-','+'},'Ordinal',true);

8 Categorical Arrays

8-28

C = A.*B;

categories(C)

ans =

 'green +'

 'green -'

 'red +'

 'red -'

 'blue +'

 'blue -'

See Also
categorical | categories | summary | times

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Combine Categorical Arrays” on page 8-22
• “Access Data Using Categorical Arrays” on page 8-29

More About
• “Ordinal Categorical Arrays” on page 8-45

 Access Data Using Categorical Arrays

8-29

Access Data Using Categorical Arrays

In this section...

“Select Data By Category” on page 8-29
“Common Ways to Access Data Using Categorical Arrays” on page 8-29

Select Data By Category

Selecting data based on its values is often useful. This type of data selection can involve
creating a logical vector based on values in one variable, and then using that logical
vector to select a subset of values in other variables. You can create a logical vector for
selecting data by finding values in a numeric array that fall within a certain range.
Additionally, you can create the logical vector by finding specific discrete values. When
using categorical arrays, you can easily:

• Select elements from particular categories. For categorical arrays, use the
logical operators == or ~= to select data that is in, or not in, a particular category. To
select data in a particular group of categories, use the ismember function.

For ordinal categorical arrays, use inequalities >, >=, <, or <= to find data in
categories above or below a particular category.

• Delete data that is in a particular category. Use logical operators to include or
exclude data from particular categories.

• Find elements that are not in a defined category. Categorical arrays indicate
which elements do not belong to a defined category by <undefined>. Use the
isundefined function to find observations without a defined value.

Common Ways to Access Data Using Categorical Arrays

This example shows how to index and search using categorical arrays. You can access
data using categorical arrays stored within a table in a similar manner.

Load Sample Data

Load sample data gathered from 100 patients.

load patients

whos

8 Categorical Arrays

8-30

 Name Size Bytes Class Attributes

 Age 100x1 800 double

 Diastolic 100x1 800 double

 Gender 100x1 12212 cell

 Height 100x1 800 double

 LastName 100x1 12416 cell

 Location 100x1 15008 cell

 SelfAssessedHealthStatus 100x1 12340 cell

 Smoker 100x1 100 logical

 Systolic 100x1 800 double

 Weight 100x1 800 double

Create Categorical Arrays from Cell Arrays of Character Vectors

Gender and Location contain data that belong in categories. Each cell array contains
character vectors taken from a small set of unique values (indicating two genders and
three locations respectively). Convert Gender and Location to categorical arrays.

Gender = categorical(Gender);

Location = categorical(Location);

Search for Members of a Single Category

For categorical arrays, you can use the logical operators == and ~= to find the data that
is in, or not in, a particular category.

Determine if there are any patients observed at the location, 'Rampart General
Hospital'.

any(Location=='Rampart General Hospital')

ans =

 0

There are no patients observed at Rampart General Hospital.

Search for Members of a Group of Categories

You can use ismember to find data in a particular group of categories. Create a logical
vector for the patients observed at County General Hospital or VA Hospital.

 Access Data Using Categorical Arrays

8-31

VA_CountyGenIndex = ...

 ismember(Location,{'County General Hospital','VA Hospital'});

VA_CountyGenIndex is a 100-by-1 logical array containing logical true (1) for each
element in the categorical array Location that is a member of the category County
General Hospital or VA Hospital. The output, VA_CountyGenIndex contains 76
nonzero elements.

Use the logical vector, VA_CountyGenIndex to select the LastName of the patients
observed at either County General Hospital or VA Hospital.

VA_CountyGenPatients = LastName(VA_CountyGenIndex);

VA_CountyGenPatients is a 76-by-1 cell array of character vectors.

Select Elements in a Particular Category to Plot

Use the summary function to print a summary containing the category names and the
number of elements in each category.

summary(Location)

 County General Hospital 39

 St. Mary's Medical Center 24

 VA Hospital 37

Location is a 100-by-1 categorical array with three categories. County General
Hospital occurs in 39 elements, St. Mary s Medical Center in 24 elements, and
VA Hospital in 37 elements.

Use the summary function to print a summary of Gender.

summary(Gender)

 Female 53

 Male 47

Gender is a 100-by-1 categorical array with two categories. Female occurs in 53
elements and Male occurs in 47 elements.

Use logical operator == to access the age of only the female patients. Then plot a
histogram of this data.

figure()

8 Categorical Arrays

8-32

histogram(Age(Gender=='Female'))

title('Age of Female Patients')

histogram(Age(Gender=='Female')) plots the age data for the 53 female patients.

Delete Data from a Particular Category

You can use logical operators to include or exclude data from particular categories. Delete
all patients observed at VA Hospital from the workspace variables, Age and Location.

Age = Age(Location~='VA Hospital');

Location = Location(Location~='VA Hospital');

Now, Age is a 63-by-1 numeric array, and Location is a 63-by-1 categorical array.

 Access Data Using Categorical Arrays

8-33

List the categories of Location, as well as the number of elements in each category.

summary(Location)

 County General Hospital 39

 St. Mary's Medical Center 24

 VA Hospital 0

The patients observed at VA Hospital are deleted from Location, but VA Hospital is
still a category.

Use the removecats function to remove VA Hospital from the categories of Location.

Location = removecats(Location,'VA Hospital');

Verify that the category, VA Hospital, was removed.

categories(Location)

ans =

 'County General Hospital'

 'St. Mary's Medical Center'

Location is a 63-by-1 categorical array that has two categories.

Delete Element

You can delete elements by indexing. For example, you can remove the first element of
Location by selecting the rest of the elements with Location(2:end). However, an
easier way to delete elements is to use [].

Location(1) = [];

summary(Location)

 County General Hospital 38

 St. Mary's Medical Center 24

Location is a 62-by-1 categorical array that has two categories. Deleting the first
element has no effect on other elements from the same category and does not delete the
category itself.

8 Categorical Arrays

8-34

Check for Undefined Data

Remove the category County General Hospital from Location.

Location = removecats(Location,'County General Hospital');

Display the first eight elements of the categorical array, Location.

Location(1:8)

ans =

 St. Mary's Medical Center

 <undefined>

 St. Mary's Medical Center

 St. Mary's Medical Center

 <undefined>

 <undefined>

 St. Mary's Medical Center

 St. Mary's Medical Center

After removing the category, County General Hospital, elements that previously
belonged to that category no longer belong to any category defined for Location.
Categorical arrays denote these elements as undefined.

Use the function isundefined to find observations that do not belong to any category.

undefinedIndex = isundefined(Location);

undefinedIndex is a 62-by-1 categorical array containing logical true (1) for all
undefined elements in Location.

Set Undefined Elements

Use the summary function to print the number of undefined elements in Location.

summary(Location)

 St. Mary's Medical Center 24

 <undefined> 38

The first element of Location belongs to the category, St. Mary's Medical Center.
Set the first element to be undefined so that it no longer belongs to any category.

 Access Data Using Categorical Arrays

8-35

Location(1) = '<undefined>';

summary(Location)

 St. Mary's Medical Center 23

 <undefined> 39

You can make selected elements undefined without removing a category or changing
the categories of other elements. Set elements to be undefined to indicate elements with
values that are unknown.

Preallocate Categorical Arrays with Undefined Elements

You can use undefined elements to preallocate the size of a categorical array for better
performance. Create a categorical array that has elements with known locations only.

definedIndex = ~isundefined(Location);

newLocation = Location(definedIndex);

summary(newLocation)

 St. Mary's Medical Center 23

Expand the size of newLocation so that it is a 200-by-1 categorical array. Set the
last new element to be undefined. All of the other new elements also are set to be
undefined. The 23 original elements keep the values they had.

newLocation(200) = '<undefined>';

summary(newLocation)

 St. Mary's Medical Center 23

 <undefined> 177

newLocation has room for values you plan to store in the array later.

See Also
any | categorical | categories | histogram | isundefined | removecats |
summary

Related Examples
• “Create Categorical Arrays” on page 8-2

8 Categorical Arrays

8-36

• “Convert Table Variables Containing Character Vectors to Categorical” on page 8-6
• “Plot Categorical Data” on page 8-11
• “Compare Categorical Array Elements” on page 8-19
• “Work with Protected Categorical Arrays” on page 8-37

More About
• “Advantages of Using Categorical Arrays” on page 8-42
• “Ordinal Categorical Arrays” on page 8-45

 Work with Protected Categorical Arrays

8-37

Work with Protected Categorical Arrays

This example shows how to work with a categorical array with protected categories.

When you create a categorical array with the function categorical, you have the option
of specifying whether or not the categories are protected. Ordinal categorical arrays
always have protected categories, but you also can create a nonordinal categorical array
that is protected using the 'Protected',true name-value pair argument.

When you assign values that are not in the array’s list of categories, the array updates
automatically so that its list of categories includes the new values. Similarly, you can
combine (nonordinal) categorical arrays that have different categories. The categories in
the result include the categories from both arrays.

When you assign new values to a protected categorical array, the values must belong to
one of the existing categories. Similarly, you can only combine protected arrays that have
the same categories.

• If you want to combine two nonordinal categorical arrays that have protected
categories, they must have the same categories, but the order does not matter. The
resulting categorical array uses the category order from the first array.

• If you want to combine two ordinal categorical array (that always have protected
categories), they must have the same categories, including their order.

To add new categories to the array, you must use the function addcats.

Create an Ordinal Categorical Array

Create a categorical array containing the sizes of 10 objects. Use the names small,
medium, and large for the values 'S', 'M', and 'L'.

A = categorical({'M';'L';'S';'S';'M';'L';'M';'L';'M';'S'},...

 {'S','M','L'},{'small','medium','large'},'Ordinal',true)

A =

 medium

 large

 small

 small

 medium

 large

 medium

8 Categorical Arrays

8-38

 large

 medium

 small

A is a 10-by-1 categorical array.

Display the categories of A.

categories(A)

ans =

 'small'

 'medium'

 'large'

Verify That the Categories Are Protected

When you create an ordinal categorical array, the categories are always protected.

Use the isprotected function to verify that the categories of A are protected.

tf = isprotected(A)

tf =

 1

The categories of A are protected.

Assign a Value in a New Category

Try to add the value 'xlarge' to the categorical array, A.

A(2) = 'xlarge'

Error using categorical/subsasgn (line 55)

Cannot add a new category 'xlarge' to this categorical array

because its categories are protected. Use ADDCATS to

add the new category.

If you try to assign a new value, that does not belong to one of the existing categories,
then MATLAB returns an error.

Use addcats to add a new category for xlarge. Since A is ordinal you must specify the
order for the new category.

 Work with Protected Categorical Arrays

8-39

A = addcats(A,'xlarge','After','large');

Now, you assign a value for 'xlarge', since it has an existing category.

A(2) = 'xlarge'

A =

 medium

 xlarge

 small

 small

 medium

 large

 medium

 large

 medium

 small

A is now a 10-by-1 categorical array with four categories, such that small < medium <
large < xlarge.

Combine Two Ordinal Categorical Arrays

Create another ordinal categorical array, B, containing the sizes of five items.

B = categorical([2;1;1;2;2],1:2,{'xsmall','small'},'Ordinal',true)

B =

 small

 xsmall

 xsmall

 small

 small

B is a 5-by-1 categorical array with two categories such that xsmall < small.

To combine two ordinal categorical arrays (which always have protected categories), they
must have the same categories and the categories must be in the same order.

Add the category 'xsmall' to A before the category 'small'.

A = addcats(A,'xsmall','Before','small');

8 Categorical Arrays

8-40

categories(A)

ans =

 'xsmall'

 'small'

 'medium'

 'large'

 'xlarge'

Add the categories {'medium','large','xlarge'} to B after the category 'small'.

B = addcats(B,{'medium','large','xlarge'},'After','small');

categories(B)

ans =

 'xsmall'

 'small'

 'medium'

 'large'

 'xlarge'

The categories of A and B are now the same including their order.

Vertically concatenate A and B.

C = [A;B]

C =

 medium

 large

 small

 small

 medium

 large

 medium

 large

 medium

 small

 xlarge

 small

 xsmall

 Work with Protected Categorical Arrays

8-41

 xsmall

 small

 small

The values from B are appended to the values from A.

List the categories of C.

categories(C)

ans =

 'xsmall'

 'small'

 'medium'

 'large'

 'xlarge'

C is a 16-by-1 ordinal categorical array with five categories, such that xsmall < small
< medium < large < xlarge.

See Also
addcats | categorical | categories | isordinal | isprotected | summary

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Convert Table Variables Containing Character Vectors to Categorical” on page 8-6
• “Access Data Using Categorical Arrays” on page 8-29
• “Combine Categorical Arrays” on page 8-22
• “Combine Categorical Arrays Using Multiplication” on page 8-26

More About
• “Ordinal Categorical Arrays” on page 8-45

8 Categorical Arrays

8-42

Advantages of Using Categorical Arrays

In this section...

“Natural Representation of Categorical Data” on page 8-42
“Mathematical Ordering for Character Vectors” on page 8-42
“Reduce Memory Requirements” on page 8-42

Natural Representation of Categorical Data

categorical is a data type to store data with values from a finite set of discrete
categories. One common alternative to using categorical arrays is to use character arrays
or cell arrays of character vectors. To compare values in character arrays and cell arrays
of character vectors, you must use strcmp which can be cumbersome. With categorical
arrays, you can use the logical operator eq (==) to compare elements in the same way
that you compare numeric arrays. The other common alternative to using categorical
arrays is to store categorical data using integers in numeric arrays. Using numeric
arrays loses all the useful descriptive information from the category names, and also
tends to suggest that the integer values have their usual numeric meaning, which, for
categorical data, they do not.

Mathematical Ordering for Character Vectors

Categorical arrays are convenient and memory efficient containers for nonnumeric data
with values from a finite set of discrete categories. They are especially useful when the
categories have a meaningful mathematical ordering, such as an array with entries from
the discrete set of categories {'small','medium','large'} where small < medium
< large.

An ordering other than alphabetical order is not possible with character arrays or cell
arrays of character vectors. Thus, inequality comparisons, such as greater and less than,
are not possible. With categorical arrays, you can use relational operations to test for
equality and perform element-wise comparisons that have a meaningful mathematical
ordering.

Reduce Memory Requirements

This example shows how to compare the memory required to store data as a cell array
of character vectors versus a categorical array. Categorical arrays have categories that

 Advantages of Using Categorical Arrays

8-43

are defined as character vectors, which can be costly to store and manipulate in a cell
array of character vectors or char array. Categorical arrays store only one copy of each
category name, often reducing the amount of memory required to store the array.

Create a sample cell array of character vectors.

state = [repmat({'MA'},25,1);repmat({'NY'},25,1);...

 repmat({'CA'},50,1);...

 repmat({'MA'},25,1);repmat({'NY'},25,1)];

Display information about the variable state.

whos state

 Name Size Bytes Class Attributes

 state 150x1 17400 cell

The variable state is a cell array of character vectors requiring 17,400 bytes of memory.

Convert state to a categorical array.

state = categorical(state);

Display the discrete categories in the variable state.

categories(state)

ans =

 'CA'

 'MA'

 'NY'

state contains 150 elements, but only three distinct categories.

Display information about the variable state.

whos state

 Name Size Bytes Class Attributes

8 Categorical Arrays

8-44

 state 150x1 604 categorical

There is a significant reduction in the memory required to store the variable.

See Also
categorical | categories

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Convert Table Variables Containing Character Vectors to Categorical” on page 8-6
• “Compare Categorical Array Elements” on page 8-19
• “Access Data Using Categorical Arrays” on page 8-29

More About
• “Ordinal Categorical Arrays” on page 8-45

 Ordinal Categorical Arrays

8-45

Ordinal Categorical Arrays

In this section...

“Order of Categories” on page 8-45
“How to Create Ordinal Categorical Arrays” on page 8-45
“Working with Ordinal Categorical Arrays” on page 8-48

Order of Categories

categorical is a data type to store data with values from a finite set of discrete
categories, which can have a natural order. You can specify and rearrange the order
of categories in all categorical arrays. However, you only can treat ordinal categorical
arrays as having a mathematical ordering to their categories. Use an ordinal categorical
array if you want to use the functions min, max, or relational operations, such as greater
than and less than.

The discrete set of pet categories {'dog' 'cat' 'bird'} has no meaningful
mathematical ordering. You are free to use any category order and the
meaning of the associated data does not change. For example, pets =
categorical({'bird','cat','dog','dog','cat'}) creates a categorical array
and the categories are listed in alphabetical order, {'bird' 'cat' 'dog'}. You can
choose to specify or change the order of the categories to {'dog' 'cat' 'bird'} and
the meaning of the data does not change.

ordinal categorical arrays contain categories that have a meaningful mathematical
ordering. For example, the discrete set of size categories {'small', 'medium',
'large'} has the mathematical ordering small < medium < large. The first
category listed is the smallest and the last category is the largest. The order of the
categories in an ordinal categorical array affects the result from relational comparisons of
ordinal categorical arrays.

How to Create Ordinal Categorical Arrays

This example shows how to create an ordinal categorical array using the categorical
function with the 'Ordinal',true name-value pair argument.

8 Categorical Arrays

8-46

Ordinal Categorical Array from a Cell Array of Character Vectors

Create an ordinal categorical array, sizes, from a cell array of character vectors, A. Use
valueset, specified as a vector of unique values, to define the categories for sizes.

A = {'medium' 'large';'small' 'medium'; 'large' 'small'};

valueset = {'small', 'medium', 'large'};

sizes = categorical(A,valueset,'Ordinal',true)

sizes =

 medium large

 small medium

 large small

sizes is 3-by-2 ordinal categorical array with three categories such that small <
medium < large. The order of the values in valueset becomes the order of the
categories of sizes.

Ordinal Categorical Array from Integers

Create an equivalent categorical array from an array of integers. Use the values 1, 2, and
3 to define the categories small, medium, and large, respectively.

A2 = [2 3; 1 2; 3 1];

valueset = 1:3;

catnames = {'small','medium','large'};

sizes2 = categorical(A2,valueset,catnames,'Ordinal',true)

sizes2 =

 medium large

 small medium

 large small

Compare sizes and sizes2

isequal(sizes,sizes2)

 Ordinal Categorical Arrays

8-47

ans =

 1

sizes and sizes2 are equivalent categorical arrays with the same ordering of
categories.

Convert a Categorical Array from Nonordinal to Ordinal

Create a nonordinal categorical array from the cell array of character vectors, A.

sizes3 = categorical(A)

sizes3 =

 medium large

 small medium

 large small

Determine if the categorical array is ordinal.

isordinal(sizes3)

ans =

 0

sizes3 is a nonordinal categorical array with three categories,
{'large','medium','small'}. The categories of sizes3 are the sorted unique values
from A. You must use the input argument, valueset, to specify a different category
order.

Convert sizes3 to an ordinal categorical array, such that small < medium < large.

sizes3 = categorical(sizes3,{'small','medium','large'},'Ordinal',true);

8 Categorical Arrays

8-48

sizes3 is now a 3-by-2 ordinal categorical array equivalent to sizes and sizes2.

Working with Ordinal Categorical Arrays

In order to combine or compare two categorical arrays, the sets of categories for both
input arrays must be identical, including their order. Furthermore, ordinal categorical
arrays are always protected. Therefore, when you assign values to an ordinal categorical
array, the values must belong to one of the existing categories. For more information see
“Work with Protected Categorical Arrays” on page 8-37.

See Also
categorical | categories | isequal | isordinal

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Convert Table Variables Containing Character Vectors to Categorical” on page 8-6
• “Compare Categorical Array Elements” on page 8-19
• “Access Data Using Categorical Arrays” on page 8-29

More About
• “Advantages of Using Categorical Arrays” on page 8-42

 Core Functions Supporting Categorical Arrays

8-49

Core Functions Supporting Categorical Arrays

Many functions in MATLAB operate on categorical arrays in much the same way
that they operate on other arrays. A few of these functions might exhibit special
behavior when operating on a categorical array. If multiple input arguments are ordinal
categorical arrays, the function often requires that they have the same set of categories,
including order. Furthermore, a few functions, such as max and gt, require that the
input categorical arrays are ordinal.

The following table lists notable MATLAB functions that operate on categorical arrays in
addition to other arrays.

size

length

ndims

numel

isrow

iscolumn

cat

horzcat

vertcat

isequal

isequaln

eq

ne

lt

le

ge

gt

min

max

median

mode

intersect

ismember

setdiff

setxor

unique

union

times

histogram

pie

sort

sortrows

issorted

permute

reshape

transpose

ctranspose

double

single

int8

int16

int32

int64

uint8

uint16

uint32

uint64

char

cellstr

9

Tables

• “Create and Work with Tables” on page 9-2
• “Add and Delete Table Rows” on page 9-15
• “Add and Delete Table Variables” on page 9-19
• “Clean Messy and Missing Data in Tables” on page 9-23
• “Modify Units, Descriptions and Table Variable Names” on page 9-30
• “Access Data in a Table” on page 9-34
• “Calculations on Tables” on page 9-42
• “Split Data into Groups and Calculate Statistics” on page 9-46
• “Split Table Data Variables and Apply Functions” on page 9-50
• “Advantages of Using Tables” on page 9-55
• “Grouping Variables To Split Data” on page 9-62

9 Tables

9-2

Create and Work with Tables

This example shows how to create a table from workspace variables, work with
table data, and write tables to files for later use. table is a data type for collecting
heterogeneous data and metadata properties such as variable names, row names,
descriptions, and variable units, in a single container.

Tables are suitable for column-oriented or tabular data that are often stored as columns
in a text file or in a spreadsheet. Each variable in a table can have a different data type,
but must have the same number of rows. However, variables in a table are not restricted
to column vectors. For example, a table variable can contain a matrix with multiple
columns as long as it has the same number of rows as the other table variables. A typical
use for a table is to store experimental data, where rows represent different observations
and columns represent different measured variables.

Tables are convenient containers for collecting and organizing related data variables and
for viewing and summarizing data. For example, you can extract variables to perform
calculations and conveniently add the results as new table variables. When you finish
your calculations, write the table to a file to save your results.

Create and View Table

Create a table from workspace variables and view it. Alternatively, use the Import Tool
or the readtable function to create a table from a spreadsheet or a text file. When you
import data from a file using these functions, each column becomes a table variable.

Load sample data for 100 patients from the patients MAT-file to workspace variables.

load patients

whos

 Name Size Bytes Class Attributes

 Age 100x1 800 double

 Diastolic 100x1 800 double

 Gender 100x1 12212 cell

 Height 100x1 800 double

 LastName 100x1 12416 cell

 Location 100x1 15008 cell

 SelfAssessedHealthStatus 100x1 12340 cell

 Smoker 100x1 100 logical

 Systolic 100x1 800 double

 Weight 100x1 800 double

 Create and Work with Tables

9-3

Populate a table with column-oriented variables that contain patient data. You can
access and assign table variables by name. When you assign a table variable from a
workspace variable, you can assign the table variable a different name.

Create a table and populate it with the Gender, Smoker, Height, and Weight
workspace variables. Display the first five rows.

T = table(Gender,Smoker,Height,Weight);

T(1:5,:)

ans =

 Gender Smoker Height Weight

 ________ ______ ______ ______

 'Male' true 71 176

 'Male' false 69 163

 'Female' false 64 131

 'Female' false 67 133

 'Female' false 64 119

As an alternative, use the readtable function to read the patient data from a comma-
delimited file. readtable reads all the columns that are in a file.

Create a table by reading all columns from the file, patients.dat.

T2 = readtable('patients.dat');

T2(1:5,:)

ans =

 LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus

 __________ ________ ___ ___________________________ ______ ______ ______ ________ _________ ________________________

 'Smith' 'Male' 38 'County General Hospital' 71 176 1 124 93 'Excellent'

 'Johnson' 'Male' 43 'VA Hospital' 69 163 0 109 77 'Fair'

 'Williams' 'Female' 38 'St. Mary's Medical Center' 64 131 0 125 83 'Good'

 'Jones' 'Female' 40 'VA Hospital' 67 133 0 117 75 'Fair'

 'Brown' 'Female' 49 'County General Hospital' 64 119 0 122 80 'Good'

9 Tables

9-4

You can assign more column-oriented table variables using dot notation, T.varname,
where T is the table and varname is the desired variable name. Create identifiers that
are random numbers. Then assign them to a table variable, and name the table variable
ID. All the variables you assign to a table must have the same number of rows. Display
the first five rows of T.

T.ID = randi(1e4,100,1);

T(1:5,:)

ans =

 Gender Smoker Height Weight ID

 ________ ______ ______ ______ ____

 'Male' true 71 176 8148

 'Male' false 69 163 9058

 'Female' false 64 131 1270

 'Female' false 67 133 9134

 'Female' false 64 119 6324

All the variables you assign to a table must have the same number of rows.

View the data type, description, units, and other descriptive statistics for each variable
by creating a table summary using the summary function.

summary(T)

Variables:

 Gender: 100x1 cell string

 Smoker: 100x1 logical

 Values:

 true 34

 false 66

 Height: 100x1 double

 Values:

 min 60

 median 67

 Create and Work with Tables

9-5

 max 72

 Weight: 100x1 double

 Values:

 min 111

 median 142.5

 max 202

 ID: 100x1 double

 Values:

 min 120

 median 5485.5

 max 9706

Return the size of the table.

size(T)

ans =

 100 5

T contains 100 rows and 5 variables.

Create a new, smaller table containing the first five rows of T and display it. You can
use numeric indexing within parentheses to specify rows and variables. This method is
similar to indexing into numeric arrays to create subarrays. Tnew is a 5-by-5 table.

Tnew = T(1:5,:)

Tnew =

 Gender Smoker Height Weight ID

 ________ ______ ______ ______ ____

 'Male' true 71 176 8148

 'Male' false 69 163 9058

 'Female' false 64 131 1270

 'Female' false 67 133 9134

9 Tables

9-6

 'Female' false 64 119 6324

Create a smaller table containing all rows of Tnew and the variables from the second to
the last. Use the end keyword to indicate the last variable or the last row of a table. Tnew
is a 5-by-4 table.

Tnew = Tnew(:,2:end)

Tnew =

 Smoker Height Weight ID

 ______ ______ ______ ____

 true 71 176 8148

 false 69 163 9058

 false 64 131 1270

 false 67 133 9134

 false 64 119 6324

Access Data by Row and Variable Names

Add row names to T and index into the table using row and variable names instead of
numeric indices. Add row names by assigning the LastName workspace variable to the
RowNames property of T.

T.Properties.RowNames = LastName;

Display the first five rows of T with row names.

T(1:5,:)

ans =

 Gender Smoker Height Weight ID

 ________ ______ ______ ______ ____

 Smith 'Male' true 71 176 8148

 Johnson 'Male' false 69 163 9058

 Williams 'Female' false 64 131 1270

 Jones 'Female' false 67 133 9134

 Brown 'Female' false 64 119 6324

 Create and Work with Tables

9-7

Return the size of T. The size does not change because row and variable names are not
included when calculating the size of a table.

size(T)

ans =

 100 5

Select all the data for the patients with the last names 'Smith' and 'Johnson'. In this
case, it is simpler to use the row names than to use numeric indices. Tnew is a 2-by-5
table.

Tnew = T({'Smith','Johnson'},:)

Tnew =

 Gender Smoker Height Weight ID

 ______ ______ ______ ______ ____

 Smith 'Male' true 71 176 8148

 Johnson 'Male' false 69 163 9058

Select the height and weight of the patient named 'Johnson' by indexing on variable
names. Tnew is a 1-by-2 table.

Tnew = T('Johnson',{'Height','Weight'})

Tnew =

 Height Weight

 ______ ______

 Johnson 69 163

You can access table variables either with dot syntax, as in T.Height, or by named
indexing, as in T(:,'Height').

9 Tables

9-8

Calculate and Add Result as Table Variable

You can access the contents of table variables, and then perform calculations on them
using MATLAB® functions. Calculate body-mass-index (BMI) based on data in the
existing table variables and add it as a new variable. Plot the relationship of BMI to a
patient's status as a smoker or a nonsmoker. Add blood-pressure readings to the table,
and plot the relationship of blood pressure to BMI.

Calculate BMI using the table variables, Weight and Height. You can extract Weight
and Height for the calculation while conveniently keeping Weight, Height, and BMI in
the table with the rest of the patient data. Display the first five rows of T.

T.BMI = (T.Weight*0.453592)./(T.Height*0.0254).^2;

T(1:5,:)

ans =

 Gender Smoker Height Weight ID BMI

 ________ ______ ______ ______ ____ ______

 Smith 'Male' true 71 176 8148 24.547

 Johnson 'Male' false 69 163 9058 24.071

 Williams 'Female' false 64 131 1270 22.486

 Jones 'Female' false 67 133 9134 20.831

 Brown 'Female' false 64 119 6324 20.426

Populate the variable units and variable descriptions properties for BMI. You can add
metadata to any table variable to describe further the data contained in the variable.

T.Properties.VariableUnits{'BMI'} = 'kg/m^2';

T.Properties.VariableDescriptions{'BMI'} = 'Body Mass Index';

Create a histogram to explore whether there is a relationship between smoking and body-
mass-index in this group of patients. You can index into BMI with the logical values from
the Smoker table variable, because each row contains BMI and Smoker values for the
same patient.

tf = (T.Smoker == false);

h1 = histogram(T.BMI(tf),'BinMethod','integers');

hold on

 Create and Work with Tables

9-9

tf = (T.Smoker == true);

h2 = histogram(T.BMI(tf),'BinMethod','integers');

xlabel('BMI (kg/m^2)');

ylabel('Number of Patients');

legend('Nonsmokers','Smokers');

title('BMI Distributions for Smokers and Nonsmokers');

hold off

Add blood pressure readings for the patients from the workspace variables Systolic
and Diastolic. Each row contains Systolic, Diastolic, and BMI values for the same
patient.

T.Systolic = Systolic;

T.Diastolic = Diastolic;

9 Tables

9-10

Create a histogram to show whether there is a relationship between high values of
Diastolic and BMI.

tf = (T.BMI <= 25);

h1 = histogram(T.Diastolic(tf),'BinMethod','integers');

hold on

tf = (T.BMI > 25);

h2 = histogram(T.Diastolic(tf),'BinMethod','integers');

xlabel('Diastolic Reading (mm Hg)');

ylabel('Number of Patients');

legend('BMI <= 25','BMI > 25');

title('Diastolic Readings for Low and High BMI');

hold off

 Create and Work with Tables

9-11

Reorder Table Variables and Rows for Output

To prepare the table for output, reorder the table rows by name, and table variables by
position or name. Display the final arrangement of the table.

Sort the table by row names so that patients are listed in alphabetical order.

T = sortrows(T,'RowNames');

T(1:5,:)

ans =

 Gender Smoker Height Weight ID BMI Systolic Diastolic

 ________ ______ ______ ______ ____ ______ ________ _________

 Adams 'Female' false 66 137 8235 22.112 127 83

 Alexander 'Male' true 69 171 1300 25.252 128 99

 Allen 'Female' false 63 143 7432 25.331 113 80

 Anderson 'Female' false 68 128 1577 19.462 114 77

 Bailey 'Female' false 68 130 2239 19.766 113 81

Create a BloodPressure variable to hold blood pressure readings in a 100-by-2 table
variable.

T.BloodPressure = [T.Systolic T.Diastolic];

Delete Systolic and Diastolic from the table since they are redundant.

T.Systolic = [];

T.Diastolic = [];

T(1:5,:)

ans =

 Gender Smoker Height Weight ID BMI BloodPressure

 ________ ______ ______ ______ ____ ______ _____________

 Adams 'Female' false 66 137 8235 22.112 127 83

 Alexander 'Male' true 69 171 1300 25.252 128 99

 Allen 'Female' false 63 143 7432 25.331 113 80

9 Tables

9-12

 Anderson 'Female' false 68 128 1577 19.462 114 77

 Bailey 'Female' false 68 130 2239 19.766 113 81

To put ID as the first column, reorder the table variables by position.

T = T(:,[5 1:4 6 7]);

T(1:5,:)

ans =

 ID Gender Smoker Height Weight BMI BloodPressure

 ____ ________ ______ ______ ______ ______ _____________

 Adams 8235 'Female' false 66 137 22.112 127 83

 Alexander 1300 'Male' true 69 171 25.252 128 99

 Allen 7432 'Female' false 63 143 25.331 113 80

 Anderson 1577 'Female' false 68 128 19.462 114 77

 Bailey 2239 'Female' false 68 130 19.766 113 81

You also can reorder table variables by name. To reorder the table variables so that
Gender is last:

1 Find 'Gender' in the VariableNames property of the table.
2 Move 'Gender' to the end of a cell array of variable names.
3 Use the cell array of names to reorder the table variables.

varnames = T.Properties.VariableNames;

others = ~strcmp('Gender',varnames);

varnames = [varnames(others) 'Gender'];

T = T(:,varnames);

Display the first five rows of the reordered table.

T(1:5,:)

ans =

 ID Smoker Height Weight BMI BloodPressure Gender

 ____ ______ ______ ______ ______ _____________ ________

 Create and Work with Tables

9-13

 Adams 8235 false 66 137 22.112 127 83 'Female'

 Alexander 1300 true 69 171 25.252 128 99 'Male'

 Allen 7432 false 63 143 25.331 113 80 'Female'

 Anderson 1577 false 68 128 19.462 114 77 'Female'

 Bailey 2239 false 68 130 19.766 113 81 'Female'

Write Table to File

You can write the entire table to a file, or create a subtable to write a selected portion of
the original table to a separate file.

Write T to a file with the writetable function.

writetable(T,'allPatientsBMI.txt');

You can use the readtable function to read the data in allPatientsBMI.txt into a
new table.

Create a subtable and write the subtable to a separate file. Delete the rows that contain
data on patients who are smokers. Then remove the Smoker variable. nonsmokers
contains data only for the patients who are not smokers.

nonsmokers = T;

toDelete = (nonsmokers.Smoker == true);

nonsmokers(toDelete,:) = [];

nonsmokers.Smoker = [];

Write nonsmokers to a file.

writetable(nonsmokers,'nonsmokersBMI.txt');

See Also
array2table | cell2table | Import Tool | readtable | sortrows | struct2table
| summary | table | Table Properties | writetable

Related Examples
• “Clean Messy and Missing Data in Tables” on page 9-23
• “Modify Units, Descriptions and Table Variable Names” on page 9-30
• “Access Data in a Table” on page 9-34

9 Tables

9-14

More About
• “Advantages of Using Tables” on page 9-55

 Add and Delete Table Rows

9-15

Add and Delete Table Rows

This example shows how to add and delete rows in a table. You can also edit tables using
the Variables Editor.

Load Sample Data

Load the sample patients data and create a table, T.

load patients

T = table(LastName,Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);

size(T)

ans =

 100 8

The table, T, has 100 rows and 8 variables (columns).

Add Rows by Concatenation

Create a comma-delimited file, morePatients.txt, with the following additional
patient data.

LastName,Gender,Age,Height,Weight,Smoker,Systolic,Diastolic

Abbot,Female,31,65,156,1,128,85

Bailey,Female,38,68,130,0,113,81

Cho,Female,35,61,130,0,124,80

Daniels,Female,48,67,142,1,123,74

Append the rows in the file to the end of the table, T.

T2 = readtable('morePatients.txt');

Tnew = [T;T2];

size(Tnew)

ans =

 104 8

The table Tnew has 104 rows. In order to vertically concatenate two tables, both tables
must have the same number of variables, with the same variable names. If the variable

9 Tables

9-16

names are different, you can directly assign new rows in a table to rows from another
table. For example, T(end+1:end+4,:) = T2.

Add Rows from a Cell Array

If you want to append new rows stored in a cell array, first convert the cell array to a
table, and then concatenate the tables.

cellPatients = {'LastName','Gender','Age','Height','Weight',...

 'Smoker','Systolic','Diastolic';

 'Edwards','Male',42,70,158,0,116,83;

 'Falk','Female',28,62,125,1,120,71};

T2 = cell2table(cellPatients(2:end,:));

T2.Properties.VariableNames = cellPatients(1,:);

Tnew = [Tnew;T2];

size(Tnew)

ans =

 106 8

Add Rows from a Structure

You also can append new rows stored in a structure. Convert the structure to a table, and
then concatenate the tables.

structPatients(1,1).LastName = 'George';

structPatients(1,1).Gender = 'Male';

structPatients(1,1).Age = 45;

structPatients(1,1).Height = 76;

structPatients(1,1).Weight = 182;

structPatients(1,1).Smoker = 1;

structPatients(1,1).Systolic = 132;

structPatients(1,1).Diastolic = 85;

structPatients(2,1).LastName = 'Hadley';

structPatients(2,1).Gender = 'Female';

structPatients(2,1).Age = 29;

structPatients(2,1).Height = 58;

structPatients(2,1).Weight = 120;

structPatients(2,1).Smoker = 0;

structPatients(2,1).Systolic = 112;

structPatients(2,1).Diastolic = 70;

 Add and Delete Table Rows

9-17

Tnew = [Tnew;struct2table(structPatients)];

size(Tnew)

ans =

 108 8

Omit Duplicate Rows

Use unique to omit any rows in a table that are duplicated.

Tnew = unique(Tnew);

size(Tnew)

ans =

 106 8

Two duplicated rows are deleted.

Delete Rows by Row Number

Delete rows 18, 20, and 21 from the table.

Tnew([18,20,21],:) = [];

size(Tnew)

ans =

 103 8

The table contains information on 103 patients now.

Delete Rows by Row Name

First, specify the variable of identifiers, LastName, as row names. Then, delete the
variable, LastName, from Tnew. Finally, use the row name to index and delete rows.

Tnew.Properties.RowNames = Tnew.LastName;

Tnew.LastName = [];

Tnew('Smith',:) = [];

size(Tnew)

ans =

 102 7

9 Tables

9-18

The table now has one less row and one less variable.

Search for Rows To Delete

You also can search for observations in the table. For example, delete rows for any
patients under the age of 30.

toDelete = Tnew.Age<30;

Tnew(toDelete,:) = [];

size(Tnew)

ans =

 85 7

The table now has 17 fewer rows.

See Also
array2table | cell2table | readtable | struct2table | table | Table
Properties

Related Examples
• “Add and Delete Table Variables” on page 9-19
• “Clean Messy and Missing Data in Tables” on page 9-23

 Add and Delete Table Variables

9-19

Add and Delete Table Variables

This example shows how to add and delete column-oriented variables in a table. You also
can edit tables using the Variables Editor.

Load Sample Data

Load the sample patients data and create two tables. Create one table, T, with
information collected from a patient questionnaire and create another table, T1, with
data measured from the patient.

load patients

T = table(Age,Gender,Smoker);

T1 = table(Height,Weight,Systolic,Diastolic);

Display the first five rows of each table.

T(1:5,:)

T1(1:5,:)

ans =

 Age Gender Smoker

 ___ ________ ______

 38 'Male' true

 43 'Male' false

 38 'Female' false

 40 'Female' false

 49 'Female' false

ans =

 Height Weight Systolic Diastolic

 ______ ______ ________ _________

 71 176 124 93

 69 163 109 77

 64 131 125 83

 67 133 117 75

 64 119 122 80

9 Tables

9-20

The table T has 100 rows and 3 variables.

The table T1 has 100 rows and 4 variables.

Add Variables by Concatenating Tables

Add variables to the table, T, by horizontally concatenating it with T1.

T = [T T1];

Display the first five rows of the table, T.

T(1:5,:)

ans =

 Age Gender Smoker Height Weight Systolic Diastolic

 ___ ________ ______ ______ ______ ________ _________

 38 'Male' true 71 176 124 93

 43 'Male' false 69 163 109 77

 38 'Female' false 64 131 125 83

 40 'Female' false 67 133 117 75

 49 'Female' false 64 119 122 80

The table, T, now has 7 variables and 100 rows.

If the tables that you are horizontally concatenating have row names, horzcat
concatenates the tables by matching the row names. Therefore, the tables must use the
same row names, but the row order does not matter.

Add and Delete Variables by Name

First create a new variable for blood pressure as a horizontal concatenation of the
two variables Systolic and Diastolic. Then, delete the variables Systolic and
Diastolic by name using dot indexing.

T.BloodPressure = [T.Systolic T.Diastolic];

T.Systolic = [];

T.Diastolic = [];

 Add and Delete Table Variables

9-21

Alternatively, you can also use parentheses with named indexing to delete the variables
Systolic and Diastolic at once, T(:,{'Systolic','Diastolic'}) = [];.

Display the first five rows of the table, T.

T(1:5,:)

ans =

 Age Gender Smoker Height Weight BloodPressure

 ___ ________ ______ ______ ______ _____________

 38 'Male' true 71 176 124 93

 43 'Male' false 69 163 109 77

 38 'Female' false 64 131 125 83

 40 'Female' false 67 133 117 75

 49 'Female' false 64 119 122 80

T now has 6 variables and 100 rows.

Add a new variable, BMI, in the table, T, to contain the body mass index for each patient.
BMI is a function of height and weight.

T.BMI = (T.Weight*0.453592)./(T.Height*0.0254).^2;

The operators ./ and .^ in the calculation of BMI indicate element-wise division and
exponentiation, respectively.

Display the first five rows of the table, T.

T(1:5,:)

ans =

 Age Gender Smoker Height Weight BloodPressure BMI

 ___ ________ ______ ______ ______ _____________ ______

 38 'Male' true 71 176 124 93 24.547

 43 'Male' false 69 163 109 77 24.071

 38 'Female' false 64 131 125 83 22.486

 40 'Female' false 67 133 117 75 20.831

 49 'Female' false 64 119 122 80 20.426

9 Tables

9-22

T has 100 rows and 7 variables.

Delete Variables by Number

Delete the third variable, Smoker, and the sixth variable, BloodPressure, from the
table.

T(:,[3,6]) = [];

Display the first five rows of the table, T.

T(1:5,:)

ans =

 Age Gender Height Weight BMI

 ___ ________ ______ ______ ______

 38 'Male' 71 176 24.547

 43 'Male' 69 163 24.071

 38 'Female' 64 131 22.486

 40 'Female' 67 133 20.831

 49 'Female' 64 119 20.426

T has 100 rows and 5 variables.

See Also
array2table | cell2table | readtable | struct2table | table

Related Examples
• “Add and Delete Table Rows” on page 9-15
• “Clean Messy and Missing Data in Tables” on page 9-23
• “Modify Units, Descriptions and Table Variable Names” on page 9-30

 Clean Messy and Missing Data in Tables

9-23

Clean Messy and Missing Data in Tables

This example shows how to find, clean, and delete table rows with missing data.

Create and Load Sample Data

Create a comma-separated text file, messy.csv, that contains the following data.

A,B,C,D,E

afe1,3,yes,3,3

egh3,.,no,7,7

wth4,3,yes,3,3

atn2,23,no,23,23

arg1,5,yes,5,5

jre3,34.6,yes,34.6,34.6

wen9,234,yes,234,234

ple2,2,no,2,2

dbo8,5,no,5,5

oii4,5,yes,5,5

wnk3,245,yes,245,245

abk6,563,,563,563

pnj5,463,no,463,463

wnn3,6,no,6,6

oks9,23,yes,23,23

wba3,,yes,NaN,14

pkn4,2,no,2,2

adw3,22,no,22,22

poj2,-99,yes,-99,-99

bas8,23,no,23,23

gry5,NA,yes,NaN,21

There are many different missing data indicators in messy.csv.

• Empty character vector ('')
• period (.)
• NA

• NaN

• -99

Create a table from the comma-separated text file. To specify character vectors to
treat as empty values, use the 'TreatAsEmpty' name-value pair argument with the
readtable function.

9 Tables

9-24

T = readtable('messy.csv',...

 'TreatAsEmpty',{'.','NA'})

T =

 A B C D E

 ______ ____ _____ ____ ____

 'afe1' 3 'yes' 3 3

 'egh3' NaN 'no' 7 7

 'wth4' 3 'yes' 3 3

 'atn2' 23 'no' 23 23

 'arg1' 5 'yes' 5 5

 'jre3' 34.6 'yes' 34.6 34.6

 'wen9' 234 'yes' 234 234

 'ple2' 2 'no' 2 2

 'dbo8' 5 'no' 5 5

 'oii4' 5 'yes' 5 5

 'wnk3' 245 'yes' 245 245

 'abk6' 563 '' 563 563

 'pnj5' 463 'no' 463 463

 'wnn3' 6 'no' 6 6

 'oks9' 23 'yes' 23 23

 'wba3' NaN 'yes' NaN 14

 'pkn4' 2 'no' 2 2

 'adw3' 22 'no' 22 22

 'poj2' -99 'yes' -99 -99

 'bas8' 23 'no' 23 23

 'gry5' NaN 'yes' NaN 21

T is a table with 21 rows and five variables. 'TreatAsEmpty' only applies to numeric
columns in the file and cannot handle numeric literals, such as '-99'.

Summarize Table

View the data type, description, units, and other descriptive statistics for each variable
by creating a table summary using the summary function.

summary(T)

Variables:

 A: 21x1 cell string

 Clean Messy and Missing Data in Tables

9-25

 B: 21x1 double

 Values:

 min -99

 median 14

 max 563

 NaNs 3

 C: 21x1 cell string

 D: 21x1 double

 Values:

 min -99

 median 7

 max 563

 NaNs 2

 E: 21x1 double

 Values:

 min -99

 median 14

 max 563

When you import data from a file, the default is for readtable to read any variables
with nonnumeric elements as a cell array of character vectors.

Find Rows with Missing Values

Display the subset of rows from the table, T, that have at least one missing value.

TF = ismissing(T,{'' '.' 'NA' NaN -99});

T(any(TF,2),:)

ans =

 A B C D E

 ______ ___ _____ ___ ___

 'egh3' NaN 'no' 7 7

 'abk6' 563 '' 563 563

 'wba3' NaN 'yes' NaN 14

 'poj2' -99 'yes' -99 -99

 'gry5' NaN 'yes' NaN 21

9 Tables

9-26

readtable replaced '.' and 'NA' with NaN in the numeric variables, B, D, and E.

Replace Missing Value Indicators

Clean the data so that the missing values indicated by code -99 have the standard
MATLAB numeric missing value indicator, NaN.

T = standardizeMissing(T,-99)

T =

 A B C D E

 ______ ____ _____ ____ ____

 'afe1' 3 'yes' 3 3

 'egh3' NaN 'no' 7 7

 'wth4' 3 'yes' 3 3

 'atn2' 23 'no' 23 23

 'arg1' 5 'yes' 5 5

 'jre3' 34.6 'yes' 34.6 34.6

 'wen9' 234 'yes' 234 234

 'ple2' 2 'no' 2 2

 'dbo8' 5 'no' 5 5

 'oii4' 5 'yes' 5 5

 'wnk3' 245 'yes' 245 245

 'abk6' 563 '' 563 563

 'pnj5' 463 'no' 463 463

 'wnn3' 6 'no' 6 6

 'oks9' 23 'yes' 23 23

 'wba3' NaN 'yes' NaN 14

 'pkn4' 2 'no' 2 2

 'adw3' 22 'no' 22 22

 'poj2' NaN 'yes' NaN NaN

 'bas8' 23 'no' 23 23

 'gry5' NaN 'yes' NaN 21

standardizeMissing replaces three instances of -99 with NaN.

Create Table with Complete Rows

Create a new table, T2, that contains only the complete rows—those without missing
data.

TF = ismissing(T);

T2 = T(~any(TF,2),:)

 Clean Messy and Missing Data in Tables

9-27

T2 =

 A B C D E

 ______ ____ _____ ____ ____

 'afe1' 3 'yes' 3 3

 'wth4' 3 'yes' 3 3

 'atn2' 23 'no' 23 23

 'arg1' 5 'yes' 5 5

 'jre3' 34.6 'yes' 34.6 34.6

 'wen9' 234 'yes' 234 234

 'ple2' 2 'no' 2 2

 'dbo8' 5 'no' 5 5

 'oii4' 5 'yes' 5 5

 'wnk3' 245 'yes' 245 245

 'pnj5' 463 'no' 463 463

 'wnn3' 6 'no' 6 6

 'oks9' 23 'yes' 23 23

 'pkn4' 2 'no' 2 2

 'adw3' 22 'no' 22 22

 'bas8' 23 'no' 23 23

T2 contains 16 rows and 5 variables.

Organize Data

Sort the rows of T2 in descending order by C, and then sort in ascending order by A.

T2 = sortrows(T2,{'C','A'},{'descend','ascend'})

T2 =

 A B C D E

 ______ ____ _____ ____ ____

 'afe1' 3 'yes' 3 3

 'arg1' 5 'yes' 5 5

 'jre3' 34.6 'yes' 34.6 34.6

 'oii4' 5 'yes' 5 5

 'oks9' 23 'yes' 23 23

 'wen9' 234 'yes' 234 234

 'wnk3' 245 'yes' 245 245

 'wth4' 3 'yes' 3 3

 'adw3' 22 'no' 22 22

 'atn2' 23 'no' 23 23

9 Tables

9-28

 'bas8' 23 'no' 23 23

 'dbo8' 5 'no' 5 5

 'pkn4' 2 'no' 2 2

 'ple2' 2 'no' 2 2

 'pnj5' 463 'no' 463 463

 'wnn3' 6 'no' 6 6

In C, the rows are grouped first by 'yes', followed by 'no'. Then in A, the rows are
listed alphabetically.

Reorder the table so that A and C are next to each other.

T2 = T2(:,{'A','C','B','D','E'})

T2 =

 A C B D E

 ______ _____ ____ ____ ____

 'afe1' 'yes' 3 3 3

 'arg1' 'yes' 5 5 5

 'jre3' 'yes' 34.6 34.6 34.6

 'oii4' 'yes' 5 5 5

 'oks9' 'yes' 23 23 23

 'wen9' 'yes' 234 234 234

 'wnk3' 'yes' 245 245 245

 'wth4' 'yes' 3 3 3

 'adw3' 'no' 22 22 22

 'atn2' 'no' 23 23 23

 'bas8' 'no' 23 23 23

 'dbo8' 'no' 5 5 5

 'pkn4' 'no' 2 2 2

 'ple2' 'no' 2 2 2

 'pnj5' 'no' 463 463 463

 'wnn3' 'no' 6 6 6

See Also
ismissing | readtable | sortrows | summary

Related Examples
• “Add and Delete Table Rows” on page 9-15
• “Add and Delete Table Variables” on page 9-19

 Clean Messy and Missing Data in Tables

9-29

• “Modify Units, Descriptions and Table Variable Names” on page 9-30
• “Access Data in a Table” on page 9-34

9 Tables

9-30

Modify Units, Descriptions and Table Variable Names

This example shows how to access and modify table properties for variable units,
descriptions and names. You also can edit these property values using the Variables
Editor.

Load Sample Data

Load the sample patients data and create a table.

load patients

BloodPressure = [Systolic Diastolic];

T = table(Gender,Age,Height,Weight,Smoker,BloodPressure);

Display the first five rows of the table, T.

T(1:5,:)

ans =

 Gender Age Height Weight Smoker BloodPressure

 ________ ___ ______ ______ ______ _____________

 'Male' 38 71 176 true 124 93

 'Male' 43 69 163 false 109 77

 'Female' 38 64 131 false 125 83

 'Female' 40 67 133 false 117 75

 'Female' 49 64 119 false 122 80

T has 100 rows and 6 variables.

Add Variable Units

Specify units for each variable in the table by modifying the table property,
VariableUnits. Specify the variable units as a cell array of character vectors.

T.Properties.VariableUnits = {'' 'Yrs' 'In' 'Lbs' '' ''};

An individual empty character vector within the cell array indicates that the
corresponding variable does not have units.

 Modify Units, Descriptions and Table Variable Names

9-31

Add a Variable Description for a Single Variable

Add a variable description for the variable, BloodPressure. Assign a single character
vector to the element of the cell array containing the description for BloodPressure.

T.Properties.VariableDescriptions{'BloodPressure'} = 'Systolic/Diastolic';

You can use the variable name, 'BloodPressure', or the numeric index of the variable,
6, to index into the cell array of character vectors containing the variable descriptions.

Summarize the Table

View the data type, description, units, and other descriptive statistics for each variable
by using summary to summarize the table.

summary(T)

Variables:

 Gender: 100x1 cell string

 Age: 100x1 double

 Units: Yrs

 Values:

 min 25

 median 39

 max 50

 Height: 100x1 double

 Units: In

 Values:

 min 60

 median 67

 max 72

 Weight: 100x1 double

 Units: Lbs

 Values:

 min 111

 median 142.5

9 Tables

9-32

 max 202

 Smoker: 100x1 logical

 Values:

 true 34

 false 66

 BloodPressure: 100x2 double

 Description: Systolic/Diastolic

 Values:

 BloodPressure_1 BloodPressure_2

 _______________ _______________

 min 109 68

 median 122 81.5

 max 138 99

The BloodPressure variable has a description and the Age, Height, Weight, and
BloodPressure variables have units.

Change a Variable Name

Change the variable name for the first variable from Gender to Sex.

T.Properties.VariableNames{'Gender'} = 'Sex';

Display the first five rows of the table, T.

T(1:5,:)

ans =

 Sex Age Height Weight Smoker BloodPressure

 ________ ___ ______ ______ ______ _____________

 'Male' 38 71 176 true 124 93

 'Male' 43 69 163 false 109 77

 'Female' 38 64 131 false 125 83

 'Female' 40 67 133 false 117 75

 'Female' 49 64 119 false 122 80

 Modify Units, Descriptions and Table Variable Names

9-33

In addition to properties for variable units, descriptions and names, there are table
properties for row and dimension names, a table description, and user data.

See Also
array2table | cell2table | readtable | struct2table | summary | table |
Table Properties

Related Examples
• “Add and Delete Table Variables” on page 9-19
• “Access Data in a Table” on page 9-34

9 Tables

9-34

Access Data in a Table

In this section...

“Ways to Index into a Table” on page 9-34
“Create Table from Subset of Larger Table” on page 9-35
“Create Array from the Contents of Table” on page 9-38

Ways to Index into a Table

A table is a container for storing column-oriented variables that have the same number
of rows. Parentheses allow you to select a subset of the data in a table and preserve the
table container. Curly braces and dot indexing allow you to extract data from a table.

If you use curly braces, the resulting array is the horizontal concatenation of the specified
table variables containing only the specified rows. The data types of all the specified
variables must be compatible for concatenation. You can then perform calculations using
MATLAB functions.

Dot indexing extracts data from one table variable. The result is an array of the same
data type as extracted variable. You can follow the dot indexing with parentheses to
specify a subset of rows to extract from a variable.

Summary of Table Indexing Methods

Consider a table, T.

Type of
Indexing

Result Syntax rows vars/var

Parentheses table T(rows,vars) One or more rows One or more variables
Curly

Braces
extracted

data
T{rows,vars} One or more rows One or more variables

Dot
Indexing

extracted
data

T.var

T.

(varindex)

All rows One variable

Dot
Indexing

extracted
data

T.var(rows) One or more rows One variable

 Access Data in a Table

9-35

How to Specify Rows to Access

When indexing into a table with parentheses, curly braces, or dot indexing, you can
specify rows as a colon, numeric indices, or logical expressions. Furthermore, you can
index by name using a single row name or a cell array of row names.

A logical expression can contain curly braces or dot indexing to extract data from which
you can define the subset of rows. For example, rows = T.Var2>0 returns a logical
array with logical true (1) for rows where the value in the variable Var2 is greater than
zero.

How to Specify Variables to Access

When indexing into a table with parentheses or curly braces, you can specify vars as
a colon, numeric indices, logical expressions, a single variable name, or a cell array of
variable names.

When using dot indexing, you must specify a single variable to access. For a single
variable name, use T.var. For a single variable index, specified as a positive integer, use
T.(varindex).

Create Table from Subset of Larger Table

This example shows how to create a table from a subset of a larger table.

Load Sample Data

Load the sample patients data and create a table. Use the unique identifiers in
LastName as row names.

load patients

patients = table(Age,Gender,Height,Weight,Smoker,...

 'RowNames',LastName);

The table, patients, contains 100 rows and 5 variables.

View the data type, description, units, and other descriptive statistics for each variable
by using summary to summarize the table.

summary(patients)

Variables:

9 Tables

9-36

 Age: 100x1 double

 Values:

 min 25

 median 39

 max 50

 Gender: 100x1 cell string

 Height: 100x1 double

 Values:

 min 60

 median 67

 max 72

 Weight: 100x1 double

 Values:

 min 111

 median 142.5

 max 202

 Smoker: 100x1 logical

 Values:

 true 34

 false 66

Index Using Numeric Indices

Create a subtable containing the first five rows and all the variables from the table,
patients. Use numeric indexing within the parentheses to specify the desired rows and
variables. This is similar to indexing with numeric arrays.

T1 = patients(1:5,:)

T1 =

 Age Gender Height Weight Smoker

 ___ ________ ______ ______ ______

 Access Data in a Table

9-37

 Smith 38 'Male' 71 176 true

 Johnson 43 'Male' 69 163 false

 Williams 38 'Female' 64 131 false

 Jones 40 'Female' 67 133 false

 Brown 49 'Female' 64 119 false

T1 is a 5-by-5 table. In addition to numeric indices, you can use row or variable names
inside the parentheses. In this case, using row indices and a colon is more compact than
using row or variable names.

Index Using Names

Select all the data for the patients with the last names 'Adams' and 'Brown'. In this
case, it is simpler to use the row names than to use the numeric index.

T2 = patients({'Adams','Brown'},:)

T2 =

 Age Gender Height Weight Smoker

 ___ ________ ______ ______ ______

 Adams 48 'Female' 66 137 false

 Brown 49 'Female' 64 119 false

T2 is a 2-by-5 table.

Index Using a Logical Expression

Create a new table, T3, containing the gender, height, and weight of the patients under
the age of 30. Select only the rows where the value in the variable, Age, is less than 30.

Use dot notation to extract data from a table variable and a logical expression to define
the subset of rows based on that extracted data.

rows = patients.Age<30;

vars = {'Gender','Height','Weight'};

rows is a 100-by-1 logical array containing logical true (1) for rows where the value in
the variable, Age, is less than 30.

Use parentheses to return a table containing the desired subset of the data.

9 Tables

9-38

T3 = patients(rows,vars)

T3 =

 Gender Height Weight

 ________ ______ ______

 Moore 'Male' 68 183

 Jackson 'Male' 71 174

 Garcia 'Female' 69 131

 Walker 'Female' 65 123

 Hall 'Male' 70 189

 Young 'Female' 63 114

 Hill 'Female' 64 138

 Rivera 'Female' 63 130

 Cooper 'Female' 65 127

 Cox 'Female' 66 111

 Howard 'Female' 68 134

 James 'Male' 66 186

 Jenkins 'Male' 69 189

 Perry 'Female' 64 120

 Alexander 'Male' 69 171

T3 is a 15-by-3 table.

Create Array from the Contents of Table

This example shows how to extract the contents of a table using curly braces or dot
indexing.

Load Sample Data

Load the sample patients data and create a table. Use the unique identifiers in
LastName as row names.

load patients

patients = table(Age,Gender,Height,Weight,Smoker,...

 'RowNames',LastName);

The table, patients, contains 100 rows and 5 variables.

 Access Data in a Table

9-39

Extract Multiple Rows and Multiple Variables

Extract data from multiple variables in the table, patients by using curly braces. Since
dot indexing extracts data from a single variable at a time, braces are more convenient
when you want to extract more than one variable.

Extract the height and weight for the first five patients. Use numeric indices to
select the subset of rows, 1:5, and variable names to select the subset of variables,
{Height,Weight}.

A = patients{1:5,{'Height','Weight'}}

A =

 71 176

 69 163

 64 131

 67 133

 64 119

A is a 5-by-2 numeric array.

Extract Data from One Variable

Use dot indexing to easily extract the contents of a single variable. Plot a histogram of
the numeric data in the variable, Weight.

figure()

histogram(patients.Weight)

title(' Patient Weight')

9 Tables

9-40

patients.Weight is a double-precision column vector with 100 rows. Alternatively, you
can use curly braces, patients{:,'Weight'}, to extract all the rows for the variable
Weight.

To specify a subset of rows for a single variable, you can follow the dot indexing with
parentheses or curly braces. Extract the heights of the nonsmoker patients under the age
of 30.

Use dot notation to extract data from table variables and a logical expression to define
the subset of rows based on that extracted data.

rows = patients.Smoker==false & patients.Age<30;

Use dot notation to extract the desired rows from the variable, Height.

 Access Data in a Table

9-41

patients.Height(rows)

ans =

 68

 71

 70

 63

 64

 63

 65

 66

 68

 66

 64

The output is a 11-by-1 numeric array. Alternatively, you can specify the single variable,
Height, within curly braces to extract the desired data, patients{rows,'Height'}.

See Also
histogram | summary | table | Table Properties

Related Examples
• “Create and Work with Tables” on page 9-2
• “Modify Units, Descriptions and Table Variable Names” on page 9-30
• “Calculations on Tables” on page 9-42

More About
• “Advantages of Using Tables” on page 9-55

9 Tables

9-42

Calculations on Tables

This example shows how to perform calculation on tables.

The functions rowfun and varfun apply a specified function to a table, yet many other
functions require numeric or homogeneous arrays as input arguments. You can extract
data from individual variables using dot indexing or from one or more variables using
curly braces. The extracted data is then an array that you can use as input to other
functions.

Create and Load Sample Data

Create a comma-separated text file, testScores.csv, that contains the following data.

LastName,Gender,Test1,Test2,Test3

HOWARD,male,90,87,93

WARD,male,87,85,83

TORRES,male,86,85,88

PETERSON,female,75,80,72

GRAY,female,89,86,87

RAMIREZ,female,96,92,98

JAMES,male,78,75,77

WATSON,female,91,94,92

BROOKS,female,86,83,85

KELLY,male,79,76,82

Create a table from the comma-separated text file and use the unique identifiers in the
first column as row names.

T = readtable('testScores.csv','ReadRowNames',true)

T =

 Gender Test1 Test2 Test3

 -------- ----- ----- -----

 HOWARD 'male' 90 87 93

 WARD 'male' 87 85 83

 TORRES 'male' 86 85 88

 PETERSON 'female' 75 80 72

 GRAY 'female' 89 86 87

 RAMIREZ 'female' 96 92 98

 JAMES 'male' 78 75 77

 WATSON 'female' 91 94 92

 BROOKS 'female' 86 83 85

 Calculations on Tables

9-43

 KELLY 'male' 79 76 82

T is a table with 10 rows and 4 variables.

Summarize the Table

View the data type, description, units, and other descriptive statistics for each variable
by using summary to summarize the table.

summary(T)

Variables:

 Gender: 10x1 cell string

 Test1: 10x1 double

 Values:

 min 75

 median 86.5

 max 96

 Test2: 10x1 double

 Values:

 min 75

 median 85

 max 94

 Test3: 10x1 double

 Values:

 min 72

 median 86

 max 98

The summary contains the minimum, average, and maximum score for each test.

Find the Average Across Each Row

Extract the data from the second, third, and fourth variables using curly braces, {}, find
the average of each row, and store it in a new variable, TestAvg.

T.TestAvg = mean(T{:,2:end},2)

T =

 Gender Test1 Test2 Test3 TestAvg

9 Tables

9-44

 -------- ----- ----- ----- -------

 HOWARD 'male' 90 87 93 90

 WARD 'male' 87 85 83 85

 TORRES 'male' 86 85 88 86.333

 PETERSON 'female' 75 80 72 75.667

 GRAY 'female' 89 86 87 87.333

 RAMIREZ 'female' 96 92 98 95.333

 JAMES 'male' 78 75 77 76.667

 WATSON 'female' 91 94 92 92.333

 BROOKS 'female' 86 83 85 84.667

 KELLY 'male' 79 76 82 79

Alternatively, you can use the variable names, T{:,{'Test1','Test2','Test3'}} or
the variable indices, T{:,2:4} to select the subset of data.

Compute Statistics Using a Grouping Variable

Compute the mean and maximum of TestAvg for each gender.

varfun(@mean,T,'InputVariables','TestAvg',...

 'GroupingVariables','Gender')

ans =

 Gender GroupCount mean_TestAvg

 -------- ---------- ------------

 female 'female' 5 87.067

 male 'male' 5 83.4

Replace Data Values

The maximum score for each test is 100. Use curly braces to extract the data from the
table and convert the test scores to a 25 point scale.

T{:,2:end} = T{:,2:end}*25/100

T =

 Gender Test1 Test2 Test3 TestAvg

 -------- ----- ----- ----- -------

 HOWARD 'male' 22.5 21.75 23.25 22.5

 WARD 'male' 21.75 21.25 20.75 21.25

 TORRES 'male' 21.5 21.25 22 21.583

 PETERSON 'female' 18.75 20 18 18.917

 GRAY 'female' 22.25 21.5 21.75 21.833

 Calculations on Tables

9-45

 RAMIREZ 'female' 24 23 24.5 23.833

 JAMES 'male' 19.5 18.75 19.25 19.167

 WATSON 'female' 22.75 23.5 23 23.083

 BROOKS 'female' 21.5 20.75 21.25 21.167

 KELLY 'male' 19.75 19 20.5 19.75

Change a Variable Name

Change the variable name from TestAvg to Final.

T.Properties.VariableNames{end} = 'Final'

T =

 Gender Test1 Test2 Test3 Final

 -------- ----- ----- ----- ------

 HOWARD 'male' 22.5 21.75 23.25 22.5

 WARD 'male' 21.75 21.25 20.75 21.25

 TORRES 'male' 21.5 21.25 22 21.583

 PETERSON 'female' 18.75 20 18 18.917

 GRAY 'female' 22.25 21.5 21.75 21.833

 RAMIREZ 'female' 24 23 24.5 23.833

 JAMES 'male' 19.5 18.75 19.25 19.167

 WATSON 'female' 22.75 23.5 23 23.083

 BROOKS 'female' 21.5 20.75 21.25 21.167

 KELLY 'male' 19.75 19 20.5 19.75

See Also
findgroups | rowfun | splitapply | summary | table | Table Properties |
varfun

Related Examples
• “Access Data in a Table” on page 9-34
• “Split Table Data Variables and Apply Functions” on page 9-50

9 Tables

9-46

Split Data into Groups and Calculate Statistics

This example shows how to split data from the patients.mat data file into groups.
Then it shows how to calculate mean weights and body mass indices, and variances in
blood pressure readings, for the groups of patients. It also shows how to summarize the
results in a table.

Load Patient Data

Load sample data gathered from 100 patients.

load patients

Convert Gender and SelfAssessedHealthStatus to categorical arrays.

Gender = categorical(Gender);

SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus);

whos

 Name Size Bytes Class Attributes

 Age 100x1 800 double

 Diastolic 100x1 800 double

 Gender 100x1 450 categorical

 Height 100x1 800 double

 LastName 100x1 12416 cell

 Location 100x1 15008 cell

 SelfAssessedHealthStatus 100x1 696 categorical

 Smoker 100x1 100 logical

 Systolic 100x1 800 double

 Weight 100x1 800 double

Calculate Mean Weights

Split the patients into nonsmokers and smokers using the Smoker variable. Calculate
the mean weight for each group.

[G,smoker] = findgroups(Smoker);

meanWeight = splitapply(@mean,Weight,G)

meanWeight =

 Split Data into Groups and Calculate Statistics

9-47

 149.9091

 161.9412

The findgroups function returns G, a vector of group numbers created from Smoker.
The splitapply function uses G to split Weight into two groups. splitapply applies
the mean function to each group and concatenates the mean weights into a vector.

findgroups returns a vector of group identifiers as the second output argument. The
group identifiers are logical values because Smoker contains logical values. The patients
in the first group are nonsmokers, and the patients in the second group are smokers.

smoker

smoker =

 0

 1

Split the patient weights by both gender and status as a smoker and calculate the mean
weights.

G = findgroups(Gender,Smoker);

meanWeight = splitapply(@mean,Weight,G)

meanWeight =

 130.3250

 130.9231

 180.0385

 181.1429

The unique combinations across Gender and Smoker identify four groups of patients:
female nonsmokers, female smokers, male nonsmokers, and male smokers. Summarize
the four groups and their mean weights in a table.

[G,gender,smoker] = findgroups(Gender,Smoker);

T = table(gender,smoker,meanWeight)

T =

9 Tables

9-48

 gender smoker meanWeight

 ______ ______ __________

 Female false 130.32

 Female true 130.92

 Male false 180.04

 Male true 181.14

T.gender contains categorical values, and T.smoker contains logical values. The data
types of these table variables match the data types of Gender and Smoker respectively.

Calculate body mass index (BMI) for the four groups of patients. Define a function that
takes Height and Weight as its two input arguments, and that calculates BMI.

meanBMIfcn = @(h,w)mean((w ./ (h.^2)) * 703);

BMI = splitapply(meanBMIfcn,Height,Weight,G)

BMI =

 21.6721

 21.6686

 26.5775

 26.4584

Group Patients Based on Self-Reports

Calculate the fraction of patients who report their health as either Poor or Fair. First,
use splitapply to count the number of patients in each group: female nonsmokers,
female smokers, male nonsmokers, and male smokers. Then, count only those patients
who report their health as either Poor or Fair, using logical indexing on S and G. From
these two sets of counts, calculate the fraction for each group.

[G,gender,smoker] = findgroups(Gender,Smoker);

S = SelfAssessedHealthStatus;

I = ismember(S,{'Poor','Fair'});

numPatients = splitapply(@numel,S,G);

numPF = splitapply(@numel,S(I),G(I));

numPF./numPatients

ans =

 Split Data into Groups and Calculate Statistics

9-49

 0.2500

 0.3846

 0.3077

 0.1429

Compare the standard deviation in Diastolic readings of those patients who report
Poor or Fair health, and those patients who report Good or Excellent health.

stdDiastolicPF = splitapply(@std,Diastolic(I),G(I));

stdDiastolicGE = splitapply(@std,Diastolic(~I),G(~I));

Collect results in a table. For these patients, the female nonsmokers who report Poor or
Fair health show the widest variation in blood pressure readings.

T = table(gender,smoker,numPatients,numPF,stdDiastolicPF,stdDiastolicGE,BMI)

T =

 gender smoker numPatients numPF stdDiastolicPF stdDiastolicGE BMI

 ______ ______ ___________ _____ ______________ ______________ ______

 Female false 40 10 6.8872 3.9012 21.672

 Female true 13 5 5.4129 5.0409 21.669

 Male false 26 8 4.2678 4.8159 26.578

 Male true 21 3 5.6862 5.258 26.458

See Also
findgroups | splitapply

Related Examples
• “Split Table Data Variables and Apply Functions” on page 9-50

More About
• “Grouping Variables To Split Data” on page 9-62

9 Tables

9-50

Split Table Data Variables and Apply Functions

This example shows how to split power outage data from a table into groups by region
and cause of the power outages. Then it shows how to apply functions to calculate
statistics for each group and collect the results in a table.

Load Power Outage Data

The sample file, outages.csv, contains data representing electric utility outages in the
United States. The file contains six columns: Region, OutageTime, Loss, Customers,
RestorationTime, and Cause. Read outages.csv into a table.

T = readtable('outages.csv');

Convert Region and Cause to categorical arrays, and OutageTime and
RestorationTime to datetime arrays. Display the first five rows.

T.Region = categorical(T.Region);

T.Cause = categorical(T.Cause);

T.OutageTime = datetime(T.OutageTime);

T.RestorationTime = datetime(T.RestorationTime);

T(1:5,:)

ans =

 Region OutageTime Loss Customers RestorationTime Cause

 _________ ____________________ ______ __________ ____________________ _______________

 SouthWest 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00 winter storm

 SouthEast 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT winter storm

 SouthEast 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00 winter storm

 West 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00 equipment fault

 MidWest 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00 severe storm

Calculate Maximum Power Loss

Determine the greatest power loss due to a power outage in each region. The
findgroups function returns G, a vector of group numbers created from T.Region.
The splitapply function uses G to split T.Loss into five groups, corresponding to the
five regions. splitapply applies the max function to each group and concatenates the
maximum power losses into a vector.

 Split Table Data Variables and Apply Functions

9-51

G = findgroups(T.Region);

maxLoss = splitapply(@max,T.Loss,G)

maxLoss =

 1.0e+04 *

 2.3141

 2.3418

 0.8767

 0.2796

 1.6659

Calculate the maximum power loss due to a power outage by cause. To specify that
Cause is the grouping variable, use table indexing. Create a table that contains the
maximum power losses and their causes.

T1 = T(:,'Cause');

[G,powerLosses] = findgroups(T1);

powerLosses.maxLoss = splitapply(@max,T.Loss,G)

powerLosses =

 Cause maxLoss

 ________________ _______

 attack 582.63

 earthquake 258.18

 energy emergency 11638

 equipment fault 16659

 fire 872.96

 severe storm 8767.3

 thunder storm 23418

 unknown 23141

 wind 2796

 winter storm 2883.7

powerLosses is a table because T1 is a table. You can append the maximum losses as
another table variable.

9 Tables

9-52

Calculate the maximum power loss by cause in each region. To specify that Region and
Cause are the grouping variables, use table indexing. Create a table that contains the
maximum power losses and display the first 15 rows.

T1 = T(:,{'Region','Cause'});

[G,powerLosses] = findgroups(T1);

powerLosses.maxLoss = splitapply(@max,T.Loss,G);

powerLosses(1:15,:)

ans =

 Region Cause maxLoss

 _________ ________________ _______

 MidWest attack 0

 MidWest energy emergency 2378.7

 MidWest equipment fault 903.28

 MidWest severe storm 6808.7

 MidWest thunder storm 15128

 MidWest unknown 23141

 MidWest wind 2053.8

 MidWest winter storm 669.25

 NorthEast attack 405.62

 NorthEast earthquake 0

 NorthEast energy emergency 11638

 NorthEast equipment fault 794.36

 NorthEast fire 872.96

 NorthEast severe storm 6002.4

 NorthEast thunder storm 23418

Calculate Number of Customers Impacted

Determine power-outage impact on customers by cause and region. Because T.Loss
contains NaN values, wrap sum in an anonymous function to use the 'omitnan' input
argument.

osumFcn = @(x)(sum(x,'omitnan'));

powerLosses.totalCustomers = splitapply(osumFcn,T.Customers,G);

powerLosses(1:15,:)

ans =

 Split Table Data Variables and Apply Functions

9-53

 Region Cause maxLoss totalCustomers

 _________ ________________ _______ ______________

 MidWest attack 0 0

 MidWest energy emergency 2378.7 6.3363e+05

 MidWest equipment fault 903.28 1.7822e+05

 MidWest severe storm 6808.7 1.3511e+07

 MidWest thunder storm 15128 4.2563e+06

 MidWest unknown 23141 3.9505e+06

 MidWest wind 2053.8 1.8796e+06

 MidWest winter storm 669.25 4.8887e+06

 NorthEast attack 405.62 2181.8

 NorthEast earthquake 0 0

 NorthEast energy emergency 11638 1.4391e+05

 NorthEast equipment fault 794.36 3.9961e+05

 NorthEast fire 872.96 6.1292e+05

 NorthEast severe storm 6002.4 2.7905e+07

 NorthEast thunder storm 23418 2.1885e+07

Calculate Mean Durations of Power Outages

Determine the mean durations of all U.S. power outages in hours. Add the mean
durations of power outages to powerLosses. Because T.RestorationTime has NaT
values, omit the resulting NaN values when calculating the mean durations.

D = T.RestorationTime - T.OutageTime;

H = hours(D);

omeanFcn = @(x)(mean(x,'omitnan'));

powerLosses.meanOutage = splitapply(omeanFcn,H,G);

powerLosses(1:15,:)

ans =

 Region Cause maxLoss totalCustomers meanOutage

 _________ ________________ _______ ______________ __________

 MidWest attack 0 0 335.02

 MidWest energy emergency 2378.7 6.3363e+05 5339.3

 MidWest equipment fault 903.28 1.7822e+05 17.863

 MidWest severe storm 6808.7 1.3511e+07 78.906

 MidWest thunder storm 15128 4.2563e+06 51.245

 MidWest unknown 23141 3.9505e+06 30.892

 MidWest wind 2053.8 1.8796e+06 73.761

9 Tables

9-54

 MidWest winter storm 669.25 4.8887e+06 127.58

 NorthEast attack 405.62 2181.8 5.5117

 NorthEast earthquake 0 0 0

 NorthEast energy emergency 11638 1.4391e+05 77.345

 NorthEast equipment fault 794.36 3.9961e+05 87.204

 NorthEast fire 872.96 6.1292e+05 4.0267

 NorthEast severe storm 6002.4 2.7905e+07 2163.5

 NorthEast thunder storm 23418 2.1885e+07 46.098

See Also
findgroups | rowfun | splitapply | varfun

Related Examples
• “Access Data in a Table” on page 9-34
• “Calculations on Tables” on page 9-42
• “Split Data into Groups and Calculate Statistics” on page 9-46

More About
• “Grouping Variables To Split Data” on page 9-62

 Advantages of Using Tables

9-55

Advantages of Using Tables

In this section...

“Conveniently Store Mixed-Type Data in Single Container” on page 9-55
“Access Data Using Numeric or Named Indexing” on page 9-58
“Use Table Properties to Store Metadata” on page 9-59

Conveniently Store Mixed-Type Data in Single Container

You can use the table data type to collect mixed-type data and metadata properties,
such as variable name, row names, descriptions, and variable units, in a single container.
Tables are suitable for column-oriented or tabular data that is often stored as columns
in a text file or in a spreadsheet. For example, you can use a table to store experimental
data, with rows representing different observations and columns representing different
measured variables.

Tables consist of rows and column-oriented variables. Each variable in a table can have a
different data type and a different size, but each variable must have the same number of
rows.

For example, load sample patients data.

load patients

Then, combine the workspace variables, Systolic and Diastolic into a single
BloodPressure variable and convert the workspace variable, Gender, from a cell array
of character vectors to a categorical array.

BloodPressure = [Systolic Diastolic];

Gender = categorical(Gender);

whos('Gender','Age','Smoker','BloodPressure')

 Name Size Bytes Class Attributes

 Age 100x1 800 double

 BloodPressure 100x2 1600 double

 Gender 100x1 450 categorical

 Smoker 100x1 100 logical

9 Tables

9-56

The variables Age, BloodPressure, Gender, and Smoker have varying data types and
are candidates to store in a table since they all have the same number of rows, 100.

Now, create a table from the variables and display the first five rows.

T = table(Gender,Age,Smoker,BloodPressure);

T(1:5,:)

ans =

 Gender Age Smoker BloodPressure

 ______ ___ ______ _______________

 Male 38 true 124 93

 Male 43 false 109 77

 Female 38 false 125 83

 Female 40 false 117 75

 Female 49 false 122 80

The table displays in a tabular format with the variable names at the top.

Each variable in a table is a single data type. For example, if you add a new row to
the table, MATLAB forces consistency of the data type between the new data and the
corresponding table variables. If you try to add information for a new patient where the
first column contains the patient’s age instead of gender, you receive an error.

T(end+1,:) = {37,{'Female'},true,[130 84]}

Error using table/subsasgnParens (line 200)

Invalid RHS for assignment to a categorical array.

Error in table/subsasgn (line 61)

 t = subsasgnParens(t,s,b,creating);

The error occurs because MATLAB cannot assign numeric data to the categorical array,
Gender.

For comparison of tables with structures, consider the structure array, StructArray,
that is equivalent to the table, T.

StructArray = table2struct(T)

'StructArray =

101x1 struct array with fields:

 Advantages of Using Tables

9-57

 Gender

 Age

 Smoker

 BloodPressure

Structure arrays organize records using named fields. Each field’s value can have
a different data type or size. Now, display the named fields for the first element of
StructArray.

StructArray(1)

ans =

 Gender: [1x1 categorical]

 Age: 38

 Smoker: 1

 BloodPressure: [124 93]

Fields in a structure array are analogous to variables in a table. However, unlike with
tables, you cannot enforce homogeneity within a field. For example, you can have some
values of S.Gender that are categorical array elements, 'Male' or 'Female', others
that are character vectors, 'Male' or 'Female', and others that are integers, 0 or 1.

Now consider the same data stored in a scalar structure, with four fields each containing
one variable from the table.

ScalarStruct = struct(...

 'Gender',{Gender},...

 'Age',Age,...

 'Smoker',Smoker,...

 'BloodPressure',BloodPressure)

ScalarStruct =

 Gender: [100x1 categorical]

 Age: [100x1 double]

 Smoker: [100x1 logical]

 BloodPressure: [100x2 double]

Unlike with tables, you cannot enforce that the data is rectangular. For example, the
field ScalarStruct.Age can be a different length than the other fields.

A table allows you to maintain the rectangular structure (like a structure array) and
enforce homogeneity of variables (like fields in a scalar structure). Although cell arrays

9 Tables

9-58

do not have named fields, they have many of the same disadvantages as structure arrays
and scalar structures. If you have rectangular data that is homogeneous in each variable,
consider using a table. Then you can use numeric or named indexing, and you can use
table properties to store metadata.

Access Data Using Numeric or Named Indexing

You can index into a table using parentheses, curly braces, or dot indexing. Parentheses
allow you to select a subset of the data in a table and preserve the table container.
Curly braces and dot indexing allow you to extract data from a table. Within each table
indexing method, you can specify the rows or variables to access by name or by numeric
index.

Consider the sample table from above. Each row in the table, T, represents a different
patient. The workspace variable, LastName, contains unique identifiers for the 100 rows.
Add row names to the table by setting the RowNames property to LastName and display
the first five rows of the updated table.

T.Properties.RowNames = LastName;

T(1:5,:)

ans =

 Gender Age Smoker BloodPressure

 ______ ___ ______ _______________

 Smith Male 38 true 124 93

 Johnson Male 43 false 109 77

 Williams Female 38 false 125 83

 Jones Female 40 false 117 75

 Brown Female 49 false 122 80

In addition to labeling the data, you can use row and variable names to access data in
the table. For example, use named indexing to display the age and blood pressure of the
patients Williams and Brown.

T({'Williams','Brown'},{'Age','BloodPressure'})

ans =

 Age BloodPressure

 ___ _______________

 Advantages of Using Tables

9-59

 Williams 38 125 83

 Brown 49 122 80

Now, use numeric indexing to return an equivalent subtable. Return the third and fifth
row from the second and fourth variables.

T(3:2:5,2:2:4)

ans =

 Age BloodPressure

 ___ _______________

 Williams 38 125 83

 Brown 49 122 80

With cell arrays or structures, you do not have the same flexibility to use named or
numeric indexing.

• With a cell array, you must use strcmp to find desired named data, and then you can
index into the array.

• With a scalar structure or structure array, it is not possible to refer to a field by
number. Furthermore, with a scalar structure, you cannot easily select a subset of
variables or a subset of observations. With a structure array, you can select a subset
of observations, but you cannot select a subset of variables.

• With a table, you can access data by named index or by numeric index. Furthermore,
you can easily select a subset of variables and a subset of rows.

For more information on table indexing, see “Access Data in a Table” on page 9-34.

Use Table Properties to Store Metadata

In addition to storing data, tables have properties to store metadata, such as variable
names, row names, descriptions, and variable units. You can access a property using
T.Properties.PropName, where T is the name of the table and PropName is one of the
table properties.

For example, add a table description, variable descriptions, and variable units for Age.

T.Properties.Description = 'Simulated Patient Data';

T.Properties.VariableDescriptions = ...

9 Tables

9-60

 {'Male or Female' ...

 '' ...

 'true or false' ...

 'Systolic/Diastolic'};

T.Properties.VariableUnits{'Age'} = 'Yrs';

Individual empty character vectors within the cell array for VariableDescriptions
indicate that the corresponding variable does not have a description. For more
information, see Table Properties.

To print a table summary, use the summary function.

summary(T)

Description: Simulated Patient Data

Variables:

 Gender: 100x1 cell string

 Description: Male or Female

 Age: 100x1 double

 Units: Yrs

 Values:

 min 25

 median 39

 max 50

 Smoker: 100x1 logical

 Description: true or false

 Values:

 true 34

 false 66

 BloodPressure: 100x2 double

 Description: Systolic/Diastolic

 Values:

 BloodPressure_1 BloodPressure_2

 _______________ _______________

 min 109 68

 median 122 81.5

 Advantages of Using Tables

9-61

 max 138 99

Structures and cell arrays do not have properties for storing metadata.

See Also
summary | table

Related Examples
• “Create and Work with Tables” on page 9-2
• “Modify Units, Descriptions and Table Variable Names” on page 9-30
• “Access Data in a Table” on page 9-34

9 Tables

9-62

Grouping Variables To Split Data

You can use grouping variables to split data variables into groups. Typically, selecting
grouping variables is the first step in the Split-Apply-Combine workflow. You can split
data into groups, apply a function to each group, and combine the results. You also
can denote missing values in grouping variables, so that corresponding values in data
variables are ignored.

Grouping Variables

Grouping variables are variables used to group, or categorize, observations—that is, data
values in other variables. A grouping variable can be any of these data types:

• Numeric, logical, categorical, datetime, or duration vector
• Cell array of character vectors
• Table, with table variables of any data type in this list

Data variables are the variables that contain observations. A grouping variable must
have a value corresponding to each value in the data variables. Data values belong to the
same group when the corresponding values in the grouping variable are the same.

This table shows examples of data variables, grouping variables, and the groups that you
can create when you split the data variables using the grouping variables.

Data Variable Grouping Variable Groups of Data

[5 10 15 20 25 30] [0 0 0 0 1 1] [5 10 15 20] [25 30]

[10 20 30 40 50 60] [1 3 3 1 2 1] [10 40 60] [50] [20 30]

[64 72 67 69 64 68] {'F','M','F','M','F','F'}[64 67 64 68] [72 69]

You can give groups of data meaningful names when you use cell arrays of character
vectors or categorical arrays as grouping variables. A categorical array is an efficient and
flexible choice of grouping variable.

Group Definition

Typically, there are as many groups as there are unique values in the grouping variable.
(A categorical array also can include categories that are not represented in the data.) The
groups and the order of the groups depend on the data type of the grouping variable.

 Grouping Variables To Split Data

9-63

• For numeric, logical, datetime, or duration vectors, or cell arrays of character
vectors, the groups correspond to the unique values sorted in ascending order.

• For categorical arrays, the groups correspond to the unique values observed in the
array, sorted in the order returned by the categories function.

The findgroups function can accept multiple grouping variables, for example G =
findgroups(A1,A2). You also can include multiple grouping variables in a table,
for example T = table(A1,A2); G = findgroups(T). The findgroups function
defines groups by the unique combinations of values across corresponding elements of
the grouping variables. findgroups decides the order by the order of the first grouping
variable, and then by the order of the second grouping variable, and so on. For example,
if A1 = {'a','a','b','b'} and A2 = [0 1 0 0], then the unique values across the
grouping variables are 'a' 0, 'a' 1, and 'b' 0, defining three groups.

The Split-Apply-Combine Workflow

After you select grouping variables and split data variables into groups, you can apply
functions to the groups and combine the results. This workflow is called the Split-Apply-
Combine workflow. You can use the findgroups and splitapply functions together to
analyze groups of data in this workflow. This diagram shows a simple example using the
grouping variable Gender and the data variable Height to calculate the mean height by
gender.

The findgroups function returns a vector of group numbers that define groups based
on the unique values in the grouping variables. splitapply uses the group numbers to
split the data into groups efficiently before applying a function.

9 Tables

9-64

Missing Group Values

Grouping variables can have missing values. This table shows the missing value
indicator for each data type. If a grouping variable has missing values, then findgroups
assigns NaN as the group number, and splitapply ignores the corresponding values in
the data variables.

Grouping Variable Data Type Missing Value Indicator

Numeric NaN

Logical (Cannot be missing)
Categorical <undefined>

datetime NaT

duration NaN

Cell array of character vectors ''

See Also
findgroups | rowfun | splitapply | varfun

Related Examples
• “Access Data in a Table” on page 9-34

 Grouping Variables To Split Data

9-65

• “Split Table Data Variables and Apply Functions” on page 9-50
• “Split Data into Groups and Calculate Statistics” on page 9-46

10

Structures

• “Create a Structure Array” on page 10-2
• “Access Data in a Structure Array” on page 10-6
• “Concatenate Structures” on page 10-10
• “Generate Field Names from Variables” on page 10-12
• “Access Data in Nested Structures” on page 10-13
• “Access Elements of a Nonscalar Struct Array” on page 10-15
• “Ways to Organize Data in Structure Arrays” on page 10-17
• “Memory Requirements for a Structure Array” on page 10-21

10 Structures

10-2

Create a Structure Array

This example shows how to create a structure array. A structure is a data type that
groups related data using data containers called fields. Each field can contain data of any
type or size.

Store a patient record in a scalar structure with fields name, billing, and test.

patient(1).name = 'John Doe';

patient(1).billing = 127.00;

patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

patient

patient =

 name: 'John Doe'

 billing: 127

 test: [3x3 double]

Add records for other patients to the array by including subscripts after the array name.

 Create a Structure Array

10-3

patient(2).name = 'Ann Lane';

patient(2).billing = 28.50;

patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

patient

patient =

1x2 struct array with fields:

 name

 billing

 test

Each patient record in the array is a structure of class struct. An array of structures is
often referred to as a struct array. Like other MATLAB arrays, a struct array can have
any dimensions.

A struct array has the following properties:

• All structs in the array have the same number of fields.

10 Structures

10-4

• All structs have the same field names.
• Fields of the same name in different structs can contain different types or sizes of

data.

Any unspecified fields for new structs in the array contain empty arrays.

patient(3).name = 'New Name';

patient(3)

ans =

 name: 'New Name'

 billing: []

 test: []

Access data in the structure array to find how much the first patient owes, and to create
a bar graph of his test results.

amount_due = patient(1).billing

bar(patient(1).test)

title(['Test Results for ', patient(1).name])

amount_due =

 127

 Create a Structure Array

10-5

Related Examples
• “Access Data in a Structure Array” on page 10-6
• “Create a Cell Array” on page 11-3
• “Create and Work with Tables” on page 9-2

More About
• “Cell vs. Struct Arrays” on page 11-17
• “Advantages of Using Tables” on page 9-55

10 Structures

10-6

Access Data in a Structure Array

This example shows how to access the contents of a structure array. To run the code in
this example, load several variables into a scalar (1-by-1) structure named S.

S = load('clown.mat')

S =

 X: [200x320 double]

 map: [81x3 double]

 caption: [2x1 char]

The variables from the file (X, caption, and map) are now fields in the struct.

Access the data using dot notation of the form structName.fieldName. For example,
pass the numeric data in field X to the image function:

image(S.X)

colormap(S.map)

 Access Data in a Structure Array

10-7

To access part of a field, add indices as appropriate for the size and type of data in the
field. For example, pass the upper left corner of X to the image function:

upperLeft = S.X(1:50,1:80);

image(upperLeft);

10 Structures

10-8

If a particular field contains a cell array, use curly braces to access the data, such as
S.cellField{1:50,1:80}.

Data in Nonscalar Structure Arrays

Create a nonscalar array by loading data from the file mandrill.mat into a second
element of array S:

 S(2) = load('mandrill.mat')

Each element of a structure array must have the same fields. Both clown.mat and
mandrill.mat contain variables X, map, and caption.

S is a 1-by-2 array.

 Access Data in a Structure Array

10-9

S =

1x2 struct array with fields:

 X

 map

 caption

For nonscalar structures, the syntax for accessing a particular field is
structName(indices).fieldName. Redisplay the clown image, specifying the index
for the clown struct (1):

image(S(1).X)

colormap(S(1).map)

Add indices to select and redisplay the upper left corner of the field contents:

upperLeft = S(1).X(1:50,1:80);

image(upperLeft)

Note: You can index into part of a field only when you refer to a single element of a
structure array. MATLAB does not support statements such as S(1:2).X(1:50,1:80),
which attempt to index into a field for multiple elements of the structure.

Related Information

• “Access Data in Nested Structures” on page 10-13
• “Access Elements of a Nonscalar Struct Array” on page 10-15
• “Generate Field Names from Variables” on page 10-12

10 Structures

10-10

Concatenate Structures

This example shows how to concatenate structure arrays using the [] operator. To
concatenate structures, they must have the same set of fields, but the fields do not need
to contain the same sizes or types of data.

Create scalar (1-by-1) structure arrays struct1 and struct2, each with fields a and b:

struct1.a = 'first';

struct1.b = [1,2,3];

struct2.a = 'second';

struct2.b = rand(5);

Just as concatenating two scalar values such as [1, 2] creates a 1-by-2 numeric array,
concatenating struct1 and struct2,

combined = [struct1, struct2]

creates a 1-by-2 structure array:

combined =

 1x2 struct array with fields:

 a

 b

When you want to access the contents of a particular field, specify the index of the
structure in the array. For example, access field a of the first structure:

combined(1).a

This code returns

ans =

 first

Concatenation also applies to nonscalar structure arrays. For example, create a 2-by-2
structure array named new:

new(1,1).a = 1;

new(1,1).b = 10;

new(1,2).a = 2;

new(1,2).b = 20;

new(2,1).a = 3;

 Concatenate Structures

10-11

new(2,1).b = 30;

new(2,2).a = 4;

new(2,2).b = 40;

Because the 1-by-2 structure combined and the 2-by-2 structure new both have two
columns, you can concatenate them vertically with a semicolon separator:

larger = [combined; new]

This code returns a 3-by-2 structure array,

larger =

 3x2 struct array with fields:

 a

 b

where, for example,

larger(2,1).a =

 1

For related information, see:

• “Creating and Concatenating Matrices”
• “Access Data in a Structure Array” on page 10-6
• “Access Elements of a Nonscalar Struct Array” on page 10-15

10 Structures

10-12

Generate Field Names from Variables

This example shows how to derive a structure field name at run time from a variable or
expression. The general syntax is

structName.(dynamicExpression)

where dynamicExpression is a variable or expression that, when evaluated, returns
a character vector. Field names that you reference with expressions are called dynamic
field names.

For example, create a field name from the current date:

currentDate = datestr(now,'mmmdd');

myStruct.(currentDate) = [1,2,3]

If the current date reported by your system is February 29, then this code assigns data to
a field named Feb29:

myStruct =

 Feb29: [1 2 3]

Field names, like variable names, must begin with a letter, can contain letters, digits,
or underscore characters, and are case sensitive. To avoid potential conflicts, do not use
the names of existing variables or functions as field names. For more information, see
“Variable Names” on page 1-8.

 Access Data in Nested Structures

10-13

Access Data in Nested Structures

This example shows how to index into a structure that is nested within another
structure. The general syntax for accessing data in a particular field is

structName(index).nestedStructName(index).fieldName(indices)

When a structure is scalar (1-by-1), you do not need to include the indices to refer to the
single element. For example, create a scalar structure s, where field n is a nested scalar
structure with fields a, b, and c:

s.n.a = ones(3);

s.n.b = eye(4);

s.n.c = magic(5);

Access the third row of field b:

third_row_b = s.n.b(3,:)

Variable third_row_b contains the third row of eye(4).

third_row_b =

 0 0 1 0

Expand s so that both s and n are nonscalar (1-by-2):

s(1).n(2).a = 2*ones(3);

s(1).n(2).b = 2*eye(4);

s(1).n(2).c = 2*magic(5);

s(2).n(1).a = '1a';

s(2).n(2).a = '2a';

s(2).n(1).b = '1b';

s(2).n(2).b = '2b';

s(2).n(1).c = '1c';

s(2).n(2).c = '2c';

Structure s now contains the data shown in the following figure.

10 Structures

10-14

s(1)

.n(1) .a 1 1 1

1 1 1

1 1 1

.b 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.c 17 24 1 8 15

23 5 7 14 16

 4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

.n(2) 2 2 2

2 2 2

2 2 2

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

34 48 2 16 30

46 10 14 28 32

 8 12 26 40 44

20 24 38 42 6

22 36 50 4 18

s(2)

.n(1) .a 1a

.b

.c

.n(2)

1b

1c

2a

2b

2c

.a

.b

.c

.a

.b

.c

Access part of the array in field b of the second element in n within the first element of s:

part_two_eye = s(1).n(2).b(1:2,1:2)

This returns the 2-by-2 upper left corner of 2*eye(4):

part_two_eye =

 2 0

 0 2

 Access Elements of a Nonscalar Struct Array

10-15

Access Elements of a Nonscalar Struct Array

This example shows how to access and process data from multiple elements of a
nonscalar structure array:

Create a 1-by-3 structure s with field f:

s(1).f = 1;

s(2).f = 'two';

s(3).f = 3 * ones(3);

Although each structure in the array must have the same number of fields and the same
field names, the contents of the fields can be different types and sizes. When you refer to
field f for multiple elements of the structure array, such as

s(1:3).f

or

s.f

MATLAB returns the data from the elements in a comma-separated list, which displays
as follows:

ans =

 1

ans =

 two

ans =

 3 3 3

 3 3 3

 3 3 3

You cannot assign the list to a single variable with the syntax v = s.f because the
fields can contain different types of data. However, you can assign the list items to the
same number of variables, such as

[v1, v2, v3] = s.f;

or assign to elements of a cell array, such as

c = {s.f};

10 Structures

10-16

If all of the fields contain the same type of data and can form a hyperrectangle, you can
concatenate the list items. For example, create a structure nums with scalar numeric
values in field f, and concatenate the data from the fields:

nums(1).f = 1;

nums(2).f = 2;

nums(3).f = 3;

allNums = [nums.f]

This code returns

allNums =

 1 2 3

If you want to process each element of an array with the same operation, use the
arrayfun function. For example, count the number of elements in field f of each struct
in array s:

numElements = arrayfun(@(x) numel(x.f), s)

The syntax @(x) creates an anonymous function. This code calls the numel function for
each element of array s, such as numel(s(1).f), and returns

numElements =

 1 3 9

For related information, see:

• “Comma-Separated Lists” on page 2-57
• “Anonymous Functions” on page 19-23

 Ways to Organize Data in Structure Arrays

10-17

Ways to Organize Data in Structure Arrays

There are at least two ways you can organize data in a structure array: plane
organization and element-by-element organization. The method that best fits your data
depends on how you plan to access the data, and, for very large data sets, whether you
have system memory constraints.

Plane organization allows easier access to all values within a field. Element-by-element
organization allows easier access to all information related to a single element or record.
The following sections include an example of each type of organization:

• “Plane Organization” on page 10-17
• “Element-by-Element Organization” on page 10-19

When you create a structure array, MATLAB stores information about each element and
field in the array header. As a result, structures with more elements and fields require
more memory than simpler structures that contain the same data. For more information
on memory requirements for arrays, see “How MATLAB Allocates Memory” on page
28-12.

Plane Organization

Consider an RGB image with three arrays corresponding to color intensity values.

10 Structures

10-18

If you have arrays RED, GREEN, and BLUE in your workspace, then these commands
create a scalar structure named img that uses plane organization:

img.red = RED;

img.green = GREEN;

img.blue = BLUE;

Plane organization allows you to easily extract entire image planes for display, filtering,
or other processing. For example, multiply the red intensity values by 0.9:

adjustedRed = .9 * img.red;

If you have multiple images, you can add them to the img structure, so that each element
img(1),...,img(n) contains an entire image. For an example that adds elements to a
structure, see the following section.

 Ways to Organize Data in Structure Arrays

10-19

Element-by-Element Organization

Consider a database with patient information. Each record contains data for the patient’s
name, test results, and billing amount.

These statements create an element in a structure array named patient:

patient(1).name = 'John Doe';

patient(1).billing = 127.00;

patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

Additional patients correspond to new elements in the structure. For example, add an
element for a second patient:

patient(2).name = 'Ann Lane';

patient(2).billing = 28.50;

patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

Element-by-element organization supports simple indexing to access data for a particular
patient. For example, find the average of the first patient’s test results, calculating by
rows (dimension 2) rather than by columns:

aveResultsDoe = mean(patient(1).test,2)

This code returns

aveResultsDoe =

10 Structures

10-20

 75.6667

 178.5000

 212.0000

For information on processing data from more than one element at a time, see “Access
Data in a Structure Array” on page 10-6.

 Memory Requirements for a Structure Array

10-21

Memory Requirements for a Structure Array

Structure arrays do not require completely contiguous memory. However, each field
requires contiguous memory, as does the header that MATLAB creates to describe the
array. For very large arrays, incrementally increasing the number of fields or the number
of elements in a field results in Out of Memory errors.

Allocate memory for the contents by assigning initial values with the struct function,
such as

newStruct(1:25,1:50) = struct('a',ones(20),'b',zeros(30),'c',rand(40));

This code creates and populates a 25-by-50 structure array S with fields a, b, and c.

If you prefer not to assign initial values, you can initialize a structure array by assigning
empty arrays to each field of the last element in the structure array, such as

newStruct(25,50).a = [];

newStruct(25,50).b = [];

newStruct(25,50).c = [];

or, equivalently,

newStruct(25,50) = struct('a',[],'b',[],'c',[]);

However, in this case, MATLAB only allocates memory for the header, and not for the
contents of the array.

For more information, see:

• “Preallocating Memory”
• “How MATLAB Allocates Memory” on page 28-12

11

Cell Arrays

• “What Is a Cell Array?” on page 11-2
• “Create a Cell Array” on page 11-3
• “Access Data in a Cell Array” on page 11-5
• “Add Cells to a Cell Array” on page 11-8
• “Delete Data from a Cell Array” on page 11-9
• “Combine Cell Arrays” on page 11-10
• “Pass Contents of Cell Arrays to Functions” on page 11-11
• “Preallocate Memory for a Cell Array” on page 11-16
• “Cell vs. Struct Arrays” on page 11-17
• “Multilevel Indexing to Access Parts of Cells” on page 11-19

11 Cell Arrays

11-2

What Is a Cell Array?

A cell array is a data type with indexed data containers called cells. Each cell can contain
any type of data. Cell arrays commonly contain pieces of text, combinations of text and
numbers from spreadsheets or text files, or numeric arrays of different sizes.

There are two ways to refer to the elements of a cell array. Enclose indices in smooth
parentheses, (), to refer to sets of cells — for example, to define a subset of the array.
Enclose indices in curly braces, {}, to refer to the text, numbers, or other data within
individual cells.

For more information, see:

• “Create a Cell Array” on page 11-3
• “Access Data in a Cell Array” on page 11-5

 Create a Cell Array

11-3

Create a Cell Array

This example shows how to create a cell array using the {} operator or the cell
function.

When you have data to put into a cell array, create the array using the cell array
construction operator, {}:

myCell = {1, 2, 3;

 'text', rand(5,10,2), {11; 22; 33}}

Like all MATLAB arrays, cell arrays are rectangular, with the same number of cells in
each row. myCell is a 2-by-3 cell array:

myCell =

 [1] [2] [3]

 'text' [5x10x2 double] {3x1 cell}

You also can use the {} operator to create an empty 0-by-0 cell array,

C = {}

If you plan to add values to a cell array over time or in a loop, you can create an empty n-
dimensional array using the cell function:

emptyCell = cell(3,4,2)

emptyCell is a 3-by-4-by-2 cell array, where each cell contains an empty array, []:

emptyCell(:,:,1) =

 [] [] [] []

 [] [] [] []

 [] [] [] []

emptyCell(:,:,2) =

 [] [] [] []

 [] [] [] []

 [] [] [] []

Related Examples
• “Access Data in a Cell Array” on page 11-5

11 Cell Arrays

11-4

• “Multidimensional Cell Arrays”
• “Create a Structure Array” on page 10-2
• “Create and Work with Tables” on page 9-2

More About
• “Cell vs. Struct Arrays” on page 11-17
• “Advantages of Using Tables” on page 9-55

 Access Data in a Cell Array

11-5

Access Data in a Cell Array

This example shows how to read and write data to and from a cell array. To run the code
in this example, create a 2-by-3 cell array of text and numeric data:

C = {'one', 'two', 'three';

 1, 2, 3};

There are two ways to refer to the elements of a cell array. Enclose indices in smooth
parentheses, (), to refer to sets of cells—for example, to define a subset of the array.
Enclose indices in curly braces, {}, to refer to the text, numbers, or other data within
individual cells.

Cell Indexing with Smooth Parentheses, ()

Cell array indices in smooth parentheses refer to sets of cells. For example, the command

upperLeft = C(1:2,1:2)

creates a 2-by-2 cell array:

upperLeft =

 'one' 'two'

 [1] [2]

Update sets of cells by replacing them with the same number of cells. For example, the
statement

C(1,1:3) = {'first','second','third'}

replaces the cells in the first row of C with an equivalent-sized (1-by-3) cell array:

C =

 'first' 'second' 'third'

 [1] [2] [3]

If cells in your array contain numeric data, you can convert the cells to a numeric array
using the cell2mat function:

numericCells = C(2,1:3)

numericVector = cell2mat(numericCells)

numericCells is a 1-by-3 cell array, but numericVector is a 1-by-3 array of type
double:

11 Cell Arrays

11-6

numericCells =

 [1] [2] [3]

numericVector =

 1 2 3

Content Indexing with Curly Braces, {}

Access the contents of cells—the numbers, text, or other data within the cells—by
indexing with curly braces. For example, the command

last = C{2,3}

creates a numeric variable of type double, because the cell contains a double value:

last =

 3

Similarly, this command

C{2,3} = 300

replaces the contents of the last cell of C with a new, numeric value:

C =

 'first' 'second' 'third'

 [1] [2] [300]

When you access the contents of multiple cells, such as

C{1:2,1:2}

MATLAB creates a comma-separated list. Because each cell can contain a different type
of data, you cannot assign this list to a single variable. However, you can assign the list
to the same number of variables as cells. MATLAB assigns to the variables in column
order. For example,

[r1c1, r2c1, r1c2, r2c2] = C{1:2,1:2}

returns

r1c1 =

 first

r2c1 =

 Access Data in a Cell Array

11-7

 1

r1c2 =

 second

r2c2 =

 2

If each cell contains the same type of data, you can create a single variable by applying
the array concatenation operator, [], to the comma-separated list. For example,

nums = [C{2,:}]

returns

nums =

 1 2 300

For more information, see:

• “Multilevel Indexing to Access Parts of Cells” on page 11-19
• “Comma-Separated Lists” on page 2-57

11 Cell Arrays

11-8

Add Cells to a Cell Array

This example shows how to add cells to a cell array.

Create a 1-by-3 cell array:

C = {1, 2, 3};

Assign data to a cell outside the current dimensions:

C{4,4} = 44

MATLAB expands the cell array to a rectangle that includes the specified subscripts. Any
intervening cells contain empty arrays:

C =

 [1] [2] [3] []

 [] [] [] []

 [] [] [] []

 [] [] [] [44]

Add cells without specifying a value by assigning an empty array as the contents of a cell:

C{5,5} = []

C is now a 5-by-5 cell array:

C =

 [1] [2] [3] [] []

 [] [] [] [] []

 [] [] [] [] []

 [] [] [] [44] []

 [] [] [] [] []

For related examples, see:

• “Access Data in a Cell Array” on page 11-5
• “Combine Cell Arrays” on page 11-10
• “Delete Data from a Cell Array” on page 11-9

 Delete Data from a Cell Array

11-9

Delete Data from a Cell Array

This example shows how to remove data from individual cells, and how to delete entire
cells from a cell array. To run the code in this example, create a 3-by-3 cell array:

C = {1, 2, 3; 4, 5, 6; 7, 8, 9};

Delete the contents of a particular cell by assigning an empty array to the cell, using
curly braces for content indexing, {}:

C{2,2} = []

This code returns

C =

 [1] [2] [3]

 [4] [] [6]

 [7] [8] [9]

Delete sets of cells using standard array indexing with smooth parentheses, (). For
example, this command

C(2,:) = []

removes the second row of C:

C =

 [1] [2] [3]

 [7] [8] [9]

For related examples, see:

• “Add Cells to a Cell Array” on page 11-8
• “Access Data in a Cell Array” on page 11-5

11 Cell Arrays

11-10

Combine Cell Arrays

This example shows how to combine cell arrays by concatenation or nesting. To run the
code in this example, create several cell arrays with the same number of columns:

C1 = {1, 2, 3};

C2 = {'A', 'B', 'C'};

C3 = {10, 20, 30};

Concatenate cell arrays with the array concatenation operator, []. In this example,
vertically concatenate the cell arrays by separating them with semicolons:

C4 = [C1; C2; C3]

C4 is a 3-by-3 cell array:

C4 =

 [1] [2] [3]

 'A' 'B' 'C'

 [10] [20] [30]

Create a nested cell array with the cell array construction operator, {}:

C5 = {C1; C2; C3}

C5 is a 3-by-1 cell array, where each cell contains a cell array:

C5 =

 {1x3 cell}

 {1x3 cell}

 {1x3 cell}

For more information, see “Concatenating Matrices”.

 Pass Contents of Cell Arrays to Functions

11-11

Pass Contents of Cell Arrays to Functions

These examples show several ways to pass data from a cell array to a MATLAB®
function that does not recognize cell arrays as inputs.

Pass the contents of a single cell by indexing with curly braces, {}.

This example creates a cell array that contains text and a 20-by-2 array of random
numbers.

randCell = {'Random Data', rand(20,2)};

plot(randCell{1,2})

title(randCell{1,1})

11 Cell Arrays

11-12

Plot only the first column of data by indexing further into the content (multilevel
indexing).

figure

plot(randCell{1,2}(:,1))

title('First Column of Data')

Combine numeric data from multiple cells using the cell2mat function.

This example creates a 5-by-2 cell array that stores temperature data for three cities, and
plots the temperatures for each city by date.

temperature(1,:) = {'01-Jan-2010', [45, 49, 0]};

temperature(2,:) = {'03-Apr-2010', [54, 68, 21]};

 Pass Contents of Cell Arrays to Functions

11-13

temperature(3,:) = {'20-Jun-2010', [72, 85, 53]};

temperature(4,:) = {'15-Sep-2010', [63, 81, 56]};

temperature(5,:) = {'31-Dec-2010', [38, 54, 18]};

allTemps = cell2mat(temperature(:,2));

dates = datenum(temperature(:,1), 'dd-mmm-yyyy');

plot(dates, allTemps)

datetick('x','mmm')

Pass the contents of multiple cells as a comma-separated list to functions that accept multiple
inputs.

This example plots X against Y , and applies line styles from a 2-by-3 cell array C.

11 Cell Arrays

11-14

X = -pi:pi/10:pi;

Y = tan(sin(X)) - sin(tan(X));

C(:,1) = {'LineWidth'; 2};

C(:,2) = {'MarkerEdgeColor'; 'k'};

C(:,3) = {'MarkerFaceColor'; 'g'};

plot(X, Y, '--rs', C{:})

More About
• “Access Data in a Cell Array” on page 11-5
• “Multilevel Indexing to Access Parts of Cells” on page 11-19

 Pass Contents of Cell Arrays to Functions

11-15

• “Comma-Separated Lists” on page 2-57

11 Cell Arrays

11-16

Preallocate Memory for a Cell Array

This example shows how to initialize and allocate memory for a cell array.

Cell arrays do not require completely contiguous memory. However, each cell requires
contiguous memory, as does the cell array header that MATLAB creates to describe the
array. For very large arrays, incrementally increasing the number of cells or the number
of elements in a cell results in Out of Memory errors.

Initialize a cell array by calling the cell function, or by assigning to the last element.
For example, these statements are equivalent:

C = cell(25,50);

C{25,50} = [];

MATLAB creates the header for a 25-by-50 cell array. However, MATLAB does not
allocate any memory for the contents of each cell.

For more information, see:

• “Preallocating Memory”
• “How MATLAB Allocates Memory” on page 28-12

 Cell vs. Struct Arrays

11-17

Cell vs. Struct Arrays

This example compares cell and structure arrays, and shows how to store data in each
type of array. Both cell and structure arrays allow you to store data of different types and
sizes.

Structure Arrays

Structure arrays contain data in fields that you access by name.

For example, store patient records in a structure array.

patient(1).name = 'John Doe';

patient(1).billing = 127.00;

patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

patient(2).name = 'Ann Lane';

patient(2).billing = 28.50;

patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

Create a bar graph of the test results for each patient.

numPatients = numel(patient);

for p = 1:numPatients

 figure

 bar(patient(p).test)

 title(patient(p).name)

end

Cell Arrays

Cell arrays contain data in cells that you access by numeric indexing. Common
applications of cell arrays include storing separate pieces of text and storing
heterogeneous data from spreadsheets.

For example, store temperature data for three cities over time in a cell array.

temperature(1,:) = {'01-Jan-2010', [45, 49, 0]};

temperature(2,:) = {'03-Apr-2010', [54, 68, 21]};

temperature(3,:) = {'20-Jun-2010', [72, 85, 53]};

temperature(4,:) = {'15-Sep-2010', [63, 81, 56]};

temperature(5,:) = {'31-Dec-2010', [38, 54, 18]};

Plot the temperatures for each city by date.

11 Cell Arrays

11-18

allTemps = cell2mat(temperature(:,2));

dates = datenum(temperature(:,1), 'dd-mmm-yyyy');

plot(dates,allTemps)

datetick('x','mmm')

Other Container Arrays

Struct and cell arrays are the most commonly used containers for storing heterogeneous
data. Tables are convenient for storing heterogeneous column-oriented or tabular data.
Alternatively, use map containers, or create your own class.

See Also
cell | containers.Map | struct | table

Related Examples
• “Access Data in a Cell Array” on page 11-5
• “Access Data in a Structure Array” on page 10-6
• “Access Data in a Table” on page 9-34

More About
• “Advantages of Using Tables” on page 9-55

 Multilevel Indexing to Access Parts of Cells

11-19

Multilevel Indexing to Access Parts of Cells

This example explains techniques for accessing data in arrays stored within cells of cell
arrays. To run the code in this example, create a sample cell array:

myNum = [1, 2, 3];

myCell = {'one', 'two'};

myStruct.Field1 = ones(3);

myStruct.Field2 = 5*ones(5);

C = {myNum, 100*myNum;

 myCell, myStruct};

Access the complete contents of a particular cell using curly braces, {}. For example,

C{1,2}

returns the numeric vector from that cell:

ans =

 100 200 300

Access part of the contents of a cell by appending indices, using syntax that matches the
data type of the contents. For example:

• Enclose numeric indices in smooth parentheses. For example, C{1,1} returns the 1-
by-3 numeric vector, [1, 2, 3]. Access the second element of that vector with the
syntax

C{1,1}(1,2)

which returns

ans =

 2

• Enclose cell array indices in curly braces. For example, C{2,1} returns the cell array
{'one', 'two'}. Access the contents of the second cell within that cell array with
the syntax

C{2,1}{1,2}

which returns

ans =

11 Cell Arrays

11-20

 two

• Refer to fields of a struct array with dot notation, and index into the array as
described for numeric and cell arrays. For example, C{2,2} returns a structure array,
where Field2 contains a 5-by-5 numeric array of fives. Access the element in the fifth
row and first column of that field with the syntax

C{2,2}.Field2(5,1)

which returns

ans =

 5

You can nest any number of cell and structure arrays. For example, add nested cells and
structures to C.

C{2,1}{2,2} = {pi, eps};

C{2,2}.Field3 = struct('NestedField1', rand(3), ...

 'NestedField2', magic(4), ...

 'NestedField3', {{'text'; 'more text'}});

These assignment statements access parts of the new data:

copy_pi = C{2,1}{2,2}{1,1}

part_magic = C{2,2}.Field3.NestedField2(1:2,1:2)

nested_cell = C{2,2}.Field3.NestedField3{2,1}

MATLAB displays:

copy_pi =

 3.1416

part_magic =

 16 2

 5 11

nested_cell =

 more text

Related Examples
• “Access Data in a Cell Array” on page 11-5

12

Function Handles

• “Create Function Handle” on page 12-2
• “Pass Function to Another Function” on page 12-6
• “Call Local Functions Using Function Handles” on page 12-8
• “Compare Function Handles” on page 12-10

12 Function Handles

12-2

Create Function Handle

In this section...

“What Is a Function Handle?” on page 12-2
“Creating Function Handles” on page 12-2
“Anonymous Functions” on page 12-4
“Arrays of Function Handles” on page 12-4
“Saving and Loading Function Handles” on page 12-5

You can create function handles to named and anonymous functions. You can store
multiple function handles in an array, and save and load them, as you would any other
variable.

What Is a Function Handle?

A function handle is a MATLAB data type that stores an association to a function.
Indirectly calling a function enables you to invoke the function regardless of where you
call it from. Typical uses of function handles include:

• Pass a function to another function (often called function functions). For example,
passing a function to integration and optimization functions, such as integral and
fzero.

• Specify callback functions. For example, a callback that responds to a UI event or
interacts with data acquisition hardware.

• Construct handles to functions defined inline instead of stored in a program file
(anonymous functions).

• Call local functions from outside the main function.

You can see if a variable, h, is a function handle using isa(h,'function_handle').

Creating Function Handles

To create a handle for a function, precede the function name with an @ sign. For example,
if you have a function called myfunction, create a handle named f as follows:

f = @myfunction;

 Create Function Handle

12-3

You call a function using a handle the same way you call the function directly. For
example, suppose that you have a function named computeSquare, defined as:

function y = computeSquare(x)

y = x.^2;

end

Create a handle and call the function to compute the square of four.

f = @computeSquare;

a = 4;

b = f(a)

b =

 16

If the function does not require any inputs, then you can call the function with empty
parentheses, such as

h = @ones;

a = h()

a =

 1

Without the parentheses, the assignment creates another function handle.

a = h

a =

 @ones

Function handles are variables that you can pass to other functions. For example,
calculate the integral of x2 on the range [0,1].

q = integral(f,0,1);

Function handles store their absolute path, so when you have a valid handle, you can
invoke the function from any location. You do not have to specify the path to the function
when creating the handle, only the function name.

Keep the following in mind when creating handles to functions:

12 Function Handles

12-4

• Name length — Each part of the function name (including package and class names)
must be less than the number specified by namelengthmax. Otherwise, MATLAB
truncates the latter part of the name.

• Scope — The function must be in scope at the time you create the handle. Therefore,
the function must be on the MATLAB path or in the current folder. Or, for handles to
local or nested functions, the function must be in the current file.

• Precedence — When there are multiple functions with the same name, MATLAB uses
the same precedence rules to define function handles as it does to call functions. For
more information, see “Function Precedence Order” on page 19-42.

• Overloading — If the function you specify overloads a function in a class that is not a
fundamental MATLAB class, the function is not associated with the function handle
at the time it is constructed. Instead, MATLAB considers the input arguments and
determines which implementation to call at the time of evaluation.

Anonymous Functions

You can create handles to anonymous functions. An anonymous function is a one-
line expression-based MATLAB function that does not require a program file.
Construct a handle to an anonymous function by defining the body of the function,
anonymous_function, and a comma-separated list of input arguments to the
anonymous function, arglist. The syntax is:

h = @(arglist)anonymous_function

For example, create a handle, sqr, to an anonymous function that computes the square
of a number, and call the anonymous function using its handle.

sqr = @(n) n.^2;

x = sqr(3)

x =

 9

For more information, see “Anonymous Functions” on page 19-23.

Arrays of Function Handles

You can create an array of function handles by collecting them into a cell or structure
array. For example, use a cell array:

 Create Function Handle

12-5

C = {@sin, @cos, @tan};

C{2}(pi)

ans =

 -1

Or use a structure array:

S.a = @sin; S.b = @cos; S.c = @tan;

S.a(pi/2)

ans =

 1

Saving and Loading Function Handles

You can save and load function handles in MATLAB, as you would any other variable. In
other words, use the save and load functions. If you save a function handle, MATLAB
does not save the path information. If you load a function handle, and the function
file no longer exists on the path, the handle is invalid. An invalid handle occurs if
the file location or file name has changed since you created the handle. If a handle is
invalid, MATLAB still performs the load successfully and without displaying a warning.
However, when you invoke the handle, MATLAB issues an error.

See Also
func2str | functions | isa | str2func

Related Examples
• “Pass Function to Another Function” on page 12-6

More About
• “Anonymous Functions” on page 19-23

12 Function Handles

12-6

Pass Function to Another Function

You can use function handles as input arguments to other functions, which are called
function functions. These functions evaluate mathematical expressions over a range of
values. Typical function functions include integral, quad2d, fzero, and fminbnd.

For example, to find the integral of the natural log from 0 through 5, pass a handle to the
log function to integral.

a = 0;

b = 5;

q1 = integral(@log,a,b)

q1 =

 3.0472

Similarly, to find the integral of the sin function and the exp function, pass handles to
those functions to integral.

q2 = integral(@sin,a,b)

q3 = integral(@exp,a,b)

q2 =

 0.7163

q3 =

 147.4132

Also, you can pass a handle to an anonymous function to function functions. An
anonymous function is a one-line expression-based MATLAB function that does not
require a program file. For example, evaluate the integral of x/(ex – 1) on the range
[0,Inf]:

fun = @(x)x./(exp(x)-1);

q4 = integral(fun,0,Inf)

q4 =

 1.6449

 Pass Function to Another Function

12-7

Functions that take a function as an input (called function functions) expect that the
function associated with the function handle has a certain number of input variables. For
example, if you call integral or fzero, the function associated with the function handle
must have exactly one input variable. If you call integral3, the function associated
with the function handle must have three input variables. For information on calling
function functions with more variables, see “Parameterizing Functions”.

Related Examples
• “Create Function Handle” on page 12-2
• “Parameterizing Functions”

More About
• “Anonymous Functions” on page 19-23

12 Function Handles

12-8

Call Local Functions Using Function Handles

This example shows how to create handles to local functions. If a function returns
handles to local functions, you can call the local functions outside of the main function.
This approach allows you to have multiple, callable functions in a single file.

Create the following function in a file, ellipseVals.m, in your working folder. The
function returns a struct with handles to the local functions.

% Copyright 2015 The MathWorks, Inc.

function fh = ellipseVals

fh.focus = @computeFocus;

fh.eccentricity = @computeEccentricity;

fh.area = @computeArea;

end

function f = computeFocus(a,b)

f = sqrt(a^2-b^2);

end

function e = computeEccentricity(a,b)

f = computeFocus(a,b);

e = f/a;

end

function ae = computeArea(a,b)

ae = pi*a*b;

end

Invoke the function to get a struct of handles to the local functions.

h = ellipseVals

h =

 focus: @computeFocus

 eccentricity: @computeEccentricity

 area: @computeArea

 Call Local Functions Using Function Handles

12-9

Call a local function using its handle to compute the area of an ellipse.

h.area(3,1)

ans =

 9.4248

Alternatively, you can use the localfunctions function to create a cell array of
function handles from all local functions automatically. This approach is convenient if
you expect to add, remove, or modify names of the local functions.

See Also
localfunctions

Related Examples
• “Create Function Handle” on page 12-2

More About
• “Local Functions” on page 19-29

12 Function Handles

12-10

Compare Function Handles

In this section...

“Compare Handles Constructed from Named Function” on page 12-10
“Compare Handles to Anonymous Functions” on page 12-10
“Compare Handles to Nested Functions” on page 12-11
“Call Local Functions Using Function Handles” on page 12-12

Compare Handles Constructed from Named Function

MATLAB considers function handles that you construct from the same named function to
be equal. The isequal function returns a value of true when comparing these types of
handles.

fun1 = @sin;

fun2 = @sin;

isequal(fun1,fun2)

ans =

 1

If you save these handles to a MAT-file, and then load them back into the workspace,
they are still equal.

Compare Handles to Anonymous Functions

Unlike handles to named functions, function handles that represent the same anonymous
function are not equal. They are considered unequal because MATLAB cannot guarantee
that the frozen values of nonargument variables are the same. For example, in this case,
A is a nonargument variable.

A = 5;

h1 = @(x)A * x.^2;

h2 = @(x)A * x.^2;

isequal(h1,h2)

ans =

 Compare Function Handles

12-11

 0

If you make a copy of an anonymous function handle, the copy and the original are equal.

h1 = @(x)A * x.^2;

h2 = h1;

isequal(h1,h2)

ans =

 1

Compare Handles to Nested Functions

MATLAB considers function handles to the same nested function to be equal only if your
code constructs these handles on the same call to the function containing the nested
function. This function constructs two handles to the same nested function.

function [h1,h2] = test_eq(a,b,c)

h1 = @findZ;

h2 = @findZ;

 function z = findZ

 z = a.^3 + b.^2 + c';

 end

end

Function handles constructed from the same nested function and on the same call to the
parent function are considered equal.

[h1,h2] = test_eq(4,19,-7);

isequal(h1,h2)

ans =

 1

Function handles constructed from different calls are not considered equal.

[q1,q2] = test_eq(4,19,-7);

isequal(h1,q1)

ans =

12 Function Handles

12-12

 0

Call Local Functions Using Function Handles

This example shows how to create handles to local functions. If a function returns
handles to local functions, you can call the local functions outside of the main function.
This approach allows you to have multiple, callable functions in a single file.

Create the following function in a file, ellipseVals.m, in your working folder. The
function returns a struct with handles to the local functions.

% Copyright 2015 The MathWorks, Inc.

function fh = ellipseVals

fh.focus = @computeFocus;

fh.eccentricity = @computeEccentricity;

fh.area = @computeArea;

end

function f = computeFocus(a,b)

f = sqrt(a^2-b^2);

end

function e = computeEccentricity(a,b)

f = computeFocus(a,b);

e = f/a;

end

function ae = computeArea(a,b)

ae = pi*a*b;

end

Invoke the function to get a struct of handles to the local functions.

h = ellipseVals

h =

 focus: @computeFocus

 eccentricity: @computeEccentricity

 Compare Function Handles

12-13

 area: @computeArea

Call a local function using its handle to compute the area of an ellipse.

h.area(3,1)

ans =

 9.4248

Alternatively, you can use the localfunctions function to create a cell array of
function handles from all local functions automatically. This approach is convenient if
you expect to add, remove, or modify names of the local functions.

See Also
isequal

Related Examples
• “Create Function Handle” on page 12-2

13

Map Containers

• “Overview of the Map Data Structure” on page 13-2
• “Description of the Map Class” on page 13-4
• “Creating a Map Object” on page 13-6
• “Examining the Contents of the Map” on page 13-9
• “Reading and Writing Using a Key Index” on page 13-10
• “Modifying Keys and Values in the Map” on page 13-15
• “Mapping to Different Value Types” on page 13-18

13 Map Containers

13-2

Overview of the Map Data Structure

A Map is a type of fast key lookup data structure that offers a flexible means of indexing
into its individual elements. Unlike most array data structures in the MATLAB software
that only allow access to the elements by means of integer indices, the indices for a Map
can be nearly any scalar numeric value or a character vector.

Indices into the elements of a Map are called keys. These keys, along with the data values
associated with them, are stored within the Map. Each entry of a Map contains exactly
one unique key and its corresponding value. Indexing into the Map of rainfall statistics
shown below with a character vector representing the month of August yields the value
internally associated with that month, 37.3.

 327.2

 368.2

 197.6

 178.4

 100.0

 69.9

 32.3

 37.3

 19.0

 37.0

 73.2

 110.9

1551.0

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Annual

KEYS VALUES

Aug 37.3

Mean monthly rainfall statistics (mm)

Keys are not restricted to integers as they are with other arrays. Specifically, a key may
be any of the following types:

• 1-by-N character array
• Scalar real double or single
• Signed or unsigned scalar integer

 Overview of the Map Data Structure

13-3

The values stored in a Map can be of any type. This includes arrays of numeric values,
structures, cells, character arrays, objects, or other Maps.

Note: A Map is most memory efficient when the data stored in it is a scalar number or a
character array.

13 Map Containers

13-4

Description of the Map Class

In this section...

“Properties of the Map Class” on page 13-4
“Methods of the Map Class” on page 13-5

A Map is actually an object, or instance, of a MATLAB class called Map. It is also a
handle object and, as such, it behaves like any other MATLAB handle object. This
section gives a brief overview of the Map class. For more details, see the containers.Map
reference page.

Properties of the Map Class

All objects of the Map class have three properties. You cannot write directly to any of
these properties; you can change them only by means of the methods of the Map class.

Property Description Default

Count Unsigned 64-bit integer that represents the total number of
key/value pairs contained in the Map object.

0

KeyType Character vector that indicates the type of all keys
contained in the Map object. KeyType can be any of the
following: double, single, char, and signed or unsigned
32-bit or 64-bit integer. If you attempt to add keys of an
unsupported type, int8 for example, MATLAB makes
them double.

char

ValueType Character vector that indicates the type of values contained
in the Map object. If the values in a Map are all scalar
numbers of the same type, ValueType is set to that type. If
the values are all character arrays, ValueType is 'char'.
Otherwise, ValueType is 'any'.

any

To examine one of these properties, follow the name of the Map object with a dot and
then the property name. For example, to see what type of keys are used in Map mapObj,
use

mapObj.KeyType

 Description of the Map Class

13-5

A Map is a handle object. As such, if you make a copy of the object, MATLAB does not
create a new Map; it creates a new handle for the existing Map that you specify. If you
alter the Map's contents in reference to this new handle, MATLAB applies the changes
you make to the original Map as well. You can, however, delete the new handle without
affecting the original Map.

Methods of the Map Class

The Map class implements the following methods. Their use is explained in the later
sections of this documentation and also in the function reference pages.

Method Description

isKey Check if Map contains specified key
keys Names of all keys in Map
length Length of Map
remove Remove key and its value from Map
size Dimensions of Map
values Values contained in Map

13 Map Containers

13-6

Creating a Map Object

In this section...

“Constructing an Empty Map Object” on page 13-6
“Constructing An Initialized Map Object” on page 13-7
“Combining Map Objects” on page 13-8

A Map is an object of the Map class. It is defined within a MATLAB package called
containers. As with any class, you use its constructor function to create any new
instances of it. You must include the package name when calling the constructor:

newMap = containers.Map(optional_keys_and_values)

Constructing an Empty Map Object

When you call the Map constructor with no input arguments, MATLAB constructs
an empty Map object. When you do not end the command with a semicolon, MATLAB
displays the following information about the object you have constructed:

newMap = containers.Map

newMap =

 Map with properties:

 Count: 0

 KeyType: char

 ValueType: any

The properties of an empty Map object are set to their default values:

• Count = 0
• KeyType = 'char'
• ValueType = 'any'

Once you construct the empty Map object, you can use the keys and values methods
to populate it. For a summary of MATLAB functions you can use with a Map object, see
“Methods of the Map Class” on page 13-5

 Creating a Map Object

13-7

Constructing An Initialized Map Object

Most of the time, you will want to initialize the Map with at least some keys and values
at the time you construct it. You can enter one or more sets of keys and values using the
syntax shown here. The brace operators ({}) are not required if you enter only one key/
value pair:

mapObj = containers.Map({key1, key2, ...}, {val1, val2, ...});

For those keys and values that are character vectors, be sure that you specify them
enclosed within single quotation marks. For example, when constructing a Map that has
character vectors as keys, use

mapObj = containers.Map(...

 {'keystr1', 'keystr2', ...}, {val1, val2, ...});

As an example of constructing an initialized Map object, create a new Map for the
following key/value pairs taken from the monthly rainfall map shown earlier in this
section.

 327.2

 368.2

 197.6

 178.4

 100.0

 69.9

 32.3

 37.3

 19.0

 37.0

 73.2

 110.9

1551.0

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Annual

KEYS VALUES

k = {'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', ...

 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Annual'};

13 Map Containers

13-8

v = {327.2, 368.2, 197.6, 178.4, 100.0, 69.9, ...

 32.3, 37.3, 19.0, 37.0, 73.2, 110.9, 1551.0};

rainfallMap = containers.Map(k, v)

rainfallMap =

 Map with properties:

 Count: 13

 KeyType: char

 ValueType: double

The Count property is now set to the number of key/value pairs in the Map, 13, the
KeyType is char, and the ValueType is double.

Combining Map Objects

You can combine Map objects vertically using concatenation. However, the result is not
a vector of Maps, but rather a single Map object containing all key/value pairs of the
contributing Maps. Horizontal vectors of Maps are not allowed. See “Building a Map with
Concatenation” on page 13-12, below.

 Examining the Contents of the Map

13-9

Examining the Contents of the Map

Each entry in a Map consists of two parts: a unique key and its corresponding value. To
find all the keys in a Map, use the keys method. To find all of the values, use the values
method.

Create a new Map called ticketMap that maps airline ticket numbers to the holders of
those tickets. Construct the Map with four key/value pairs:

ticketMap = containers.Map(...

 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...

 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...

 'Bradley Reid'});

Use the keys method to display all keys in the Map. MATLAB lists keys of type char in
alphabetical order, and keys of any numeric type in numerical order:

keys(ticketMap)

ans =

 '2R175' 'A479GY' 'B7398' 'NZ1452'

Next, display the values that are associated with those keys in the Map. The order of the
values is determined by the order of the keys associated with them.

This table shows the keys listed in alphabetical order:

keys values

2R175 James Enright

A479GY Sarah Latham

B7398 Carl Haynes

NZ1452 Bradley Reid

The values method uses the same ordering of values:

values(ticketMap)

ans =

 'James Enright' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

13 Map Containers

13-10

Reading and Writing Using a Key Index

In this section...

“Reading From the Map” on page 13-10
“Adding Key/Value Pairs” on page 13-11
“Building a Map with Concatenation” on page 13-12

When reading from the Map, use the same keys that you have defined and associated
with particular values. Writing new entries to the Map requires that you supply the
values to store with a key for each one .

Note: For a large Map, the keys and value methods use a lot of memory as their outputs
are cell arrays.

Reading From the Map

After you have constructed and populated your Map, you can begin to use it to store and
retrieve data. You use a Map in the same manner that you would an array, except that
you are not restricted to using integer indices. The general syntax for looking up a value
(valueN) for a given key (keyN) is shown here. If the key is a character vector, enclose it
in single quotation marks:

valueN = mapObj(keyN);

Start with the Map ticketMap :

ticketMap = containers.Map(...

 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...

 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...

 'Bradley Reid'});

You can find any single value by indexing into the Map with the appropriate key:

passenger = ticketMap('2R175')

passenger =

James Enright

 Reading and Writing Using a Key Index

13-11

Find the person who holds ticket A479GY:

sprintf(' Would passenger %s please come to the desk?\n', ...

 ticketMap('A479GY'))

ans =

 Would passenger Sarah Latham please come to the desk?

To access the values of multiple keys, use the values method, specifying the keys in a
cell array:

values(ticketMap, {'2R175', 'B7398'})

ans =

 'James Enright' 'Carl Haynes'

Map containers support scalar indexing only. You cannot use the colon operator to access
a range of keys as you can with other MATLAB classes. For example, the following
statements throw an error:

ticketMap('2R175':'B7398')

ticketMap(:)

Adding Key/Value Pairs

Unlike other array types, each entry in a Map consists of two items: the value and its
key. When you write a new value to a Map, you must supply its key as well. This key
must be consistent in type with any other keys in the Map.

Use the following syntax to insert additional elements into a Map:

existingMapObj(newKeyName) = newValue;

Start with the Map ticketMap :

ticketMap = containers.Map(...

 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...

 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...

 'Bradley Reid'});

Add two more entries to the ticketMap Map. Verify that ticketMap now has six key/
value pairs:

13 Map Containers

13-12

ticketMap('947F4') = 'Susan Spera';

ticketMap('417R93') = 'Patricia Hughes';

ticketMap.Count

ans =

 6

List all of the keys and values in ticketMap:

keys(ticketMap), values(ticketMap)

ans =

 '2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'

ans =

 'James Enright' 'Patricia Hughes' 'Susan Spera' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

Building a Map with Concatenation

You can add key/value pairs to a Map in groups using concatenation. The concatenation
of Map objects is different from other classes. Instead of building a vector of Map
objects, MATLAB returns a single Map containing the key/value pairs from each of the
contributing Map objects.

Rules for the concatenation of Map objects are:

• Only vertical vectors of Map objects are allowed. You cannot create an m-by-n array
or a horizontal vector of Map objects. For this reason, vertcat is supported for Map
objects, but not horzcat.

• All keys in each Map being concatenated must be of the same class.
• You can combine Maps with different numbers of key/value pairs. The result is a

single Map object containing key/value pairs from each of the contributing Map
objects:

tMap1 = containers.Map({'2R175', 'B7398', 'A479GY'}, ...

 {'James Enright', 'Carl Haynes', 'Sarah Latham'});

 Reading and Writing Using a Key Index

13-13

tMap2 = containers.Map({'417R93', 'NZ1452', '947F4'}, ...

 {'Patricia Hughes', 'Bradley Reid', 'Susan Spera'});

% Concatenate the two maps:

ticketMap = [tMap1; tMap2];

The result of this concatenation is the same 6-element Map that was constructed in
the previous section:

ticketMap.Count

ans =

 6

keys(ticketMap), values(ticketMap)

ans =

 '2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'

ans =

 'James Enright' 'Patricia Hughes' 'Susan Spera' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

• Concatenation does not include duplicate keys or their values in the resulting Map
object.

In the following example, both objects m1 and m2 use a key of 8. In Map m1, 8 is a key
to value C; in m2, it is a key to value X:

m1 = containers.Map({1, 5, 8}, {'A', 'B', 'C'});

m2 = containers.Map({8, 9, 6}, {'X', 'Y', 'Z'});

Combine m1 and m2 to form a new Map object, m:

m = [m1; m2];

The resulting Map object m has only five key/value pairs. The value C was dropped
from the concatenation because its key was not unique:

keys(m), values(m)

ans =

13 Map Containers

13-14

 [1] [5] [6] [8] [9]

ans =

 'A' 'B' 'Z' 'X' 'Y'

 Modifying Keys and Values in the Map

13-15

Modifying Keys and Values in the Map

In this section...

“Removing Keys and Values from the Map” on page 13-15
“Modifying Values” on page 13-16
“Modifying Keys” on page 13-16
“Modifying a Copy of the Map” on page 13-17

Note: Keep in mind that if you have more than one handle to a Map, modifying the
handle also makes changes to the original Map. See “Modifying a Copy of the Map” on
page 13-17, below.

Removing Keys and Values from the Map

Use the remove method to delete any entries from a Map. When calling this method,
specify the Map object name and the key name to remove. MATLAB deletes the key and
its associated value from the Map.

The syntax for the remove method is

remove(mapName, 'keyname');

Start with the Map ticketMap :

ticketMap = containers.Map(...

 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...

 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...

 'Bradley Reid'});

Remove one entry (the specified key and its value) from the Map object:

remove(ticketMap, 'NZ1452');

values(ticketMap)

ans =

 'James Enright' 'Sarah Latham' 'Carl Haynes'

13 Map Containers

13-16

Modifying Values

You can modify any value in a Map simply by overwriting the current value. The
passenger holding ticket A479GY is identified as Sarah Latham:

ticketMap('A479GY')

ans =

Sarah Latham

Change the passenger's first name to Anna Latham by overwriting the original value for
the A479GY key:

ticketMap('A479GY') = 'Anna Latham';

Verify the change:

ticketMap('A479GY')

ans =

Anna Latham

Modifying Keys

To modify an existing key while keeping the value the same, first remove both the key
and its value from the Map. Then create a new entry, this time with the corrected key
name.

Modify the ticket number belonging to passenger James Enright:

remove(ticketMap, '2R175');

ticketMap('2S185') = 'James Enright';

k = keys(ticketMap); v = values(ticketMap);

str1 = ' ''%s'' has been assigned a new\n';

str2 = ' ticket number: %s.\n';

fprintf(str1, v{1})

fprintf(str2, k{1})

 'James Enright' has been assigned a new

 Modifying Keys and Values in the Map

13-17

 ticket number: 2S185.

Modifying a Copy of the Map

Because ticketMap is a handle object, you need to be careful when making copies of the
Map. Keep in mind that by copying a Map object, you are really just creating another
handle to the same object. Any changes you make to this handle are also applied to the
original Map.

Make a copy of the ticketMap Map. Write to this copy, and notice that the change is
applied to the original Map object itself:

copiedMap = ticketMap;

copiedMap('AZ12345') = 'unidentified person';

ticketMap('AZ12345')

ans =

unidentified person

Clean up:

remove(ticketMap, 'AZ12345');

clear copiedMap;

13 Map Containers

13-18

Mapping to Different Value Types

In this section...

“Mapping to a Structure Array” on page 13-18
“Mapping to a Cell Array” on page 13-19

It is fairly common to store other classes, such as structures or cell arrays, in a Map
structure. However, Maps are most memory efficient when the data stored in them
belongs to one of the basic MATLAB types such as double, char, integers, and logicals.

Mapping to a Structure Array

The following example maps airline seat numbers to structures that contain ticket
numbers and destinations. Start with the Map ticketMap, which maps ticket numbers
to passengers:

ticketMap = containers.Map(...

 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...

 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...

 'Bradley Reid'});

Then create the following structure array, containing ticket numbers and destinations:

s1.ticketNum = '2S185'; s1.destination = 'Barbados';

s1.reserved = '06-May-2008'; s1.origin = 'La Guardia';

s2.ticketNum = '947F4'; s2.destination = 'St. John';

s2.reserved = '14-Apr-2008'; s2.origin = 'Oakland';

s3.ticketNum = 'A479GY'; s3.destination = 'St. Lucia';

s3.reserved = '28-Mar-2008'; s3.origin = 'JFK';

s4.ticketNum = 'B7398'; s4.destination = 'Granada';

s4.reserved = '30-Apr-2008'; s4.origin = 'JFK';

s5.ticketNum = 'NZ1452'; s5.destination = 'Aruba';

s5.reserved = '01-May-2008'; s5.origin = 'Denver';

Map five seats to these structures:

seatingMap = containers.Map(...

 {'23F', '15C', '15B', '09C', '12D'}, ...

 {s5, s1, s3, s4, s2});

Using this Map object, find information about the passenger who has reserved seat 09C:

 Mapping to Different Value Types

13-19

seatingMap('09C')

ans =

 ticketNum: 'B7398'

 destination: 'Granada'

 reserved: '30-Apr-2008'

 origin: 'JFK'

Using ticketMap and seatingMap together, you can find the name of the person who
has reserved seat 15B:

ticket = seatingMap('15B').ticketNum;

passenger = ticketMap(ticket)

passenger =

Sarah Latham

Mapping to a Cell Array

As with structures, you can also map to a cell array in a Map object. Continuing with
the airline example of the previous sections, some of the passengers on the flight have
“frequent flyer” accounts with the airline. Map the names of these passengers to records
of the number of miles they have used and the number of miles they still have available:

accountMap = containers.Map(...

 {'Susan Spera','Carl Haynes','Anna Latham'}, ...

 {{247.5, 56.1}, {0, 1342.9}, {24.6, 314.7}});

Use the Map to retrieve account information on the passengers:

name = 'Carl Haynes';

acct = accountMap(name);

fprintf('%s has used %.1f miles on his/her account,\n', ...

 name, acct{1})

fprintf(' and has %.1f miles remaining.\n', acct{2})

Carl Haynes has used 0.0 miles on his/her account,

 and has 1342.9 miles remaining.

14

Combining Unlike Classes

• “Valid Combinations of Unlike Classes” on page 14-2
• “Combining Unlike Integer Types” on page 14-3
• “Combining Integer and Noninteger Data” on page 14-5
• “Combining Cell Arrays with Non-Cell Arrays” on page 14-6
• “Empty Matrices” on page 14-7
• “Concatenation Examples” on page 14-8

14 Combining Unlike Classes

14-2

Valid Combinations of Unlike Classes

Matrices and arrays can be composed of elements of most any MATLAB data type as
long as all elements in the matrix are of the same type. If you do include elements of
unlike classes when constructing a matrix, MATLAB converts some elements so that all
elements of the resulting matrix are of the same type.

Data type conversion is done with respect to a preset precedence of classes. The following
table shows the five classes you can concatenate with an unlike type without generating
an error (that is, with the exception of character and logical).

TYPE character integer single double logical

character character character character character invalid
integer character integer integer integer integer
single character integer single single single
double character integer single double double
logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a matrix of type
single. MATLAB converts the double element to single to accomplish this.

More About
• “Combining Unlike Integer Types” on page 14-3
• “Combining Integer and Noninteger Data” on page 14-5
• “Combining Cell Arrays with Non-Cell Arrays” on page 14-6
• “Concatenation Examples” on page 14-8

 Combining Unlike Integer Types

14-3

Combining Unlike Integer Types

In this section...

“Overview” on page 14-3
“Example of Combining Unlike Integer Sizes” on page 14-3
“Example of Combining Signed with Unsigned” on page 14-4

Overview

If you combine different integer types in a matrix (e.g., signed with unsigned, or 8-bit
integers with 16-bit integers), MATLAB returns a matrix in which all elements are of
one common type. MATLAB sets all elements of the resulting matrix to the data type
of the left-most element in the input matrix. For example, the result of the following
concatenation is a vector of three 16-bit signed integers:

A = [int16(450) uint8(250) int32(1000000)]

Example of Combining Unlike Integer Sizes

After disabling the integer concatenation warnings as shown above, concatenate the
following two numbers once, and then switch their order. The return value depends on
the order in which the integers are concatenated. The left-most type determines the data
type for all elements in the vector:

A = [int16(5000) int8(50)]

A =

 5000 50

B = [int8(50) int16(5000)]

B =

 50 127

The first operation returns a vector of 16-bit integers. The second returns a vector of 8-bit
integers. The element int16(5000) is set to 127, the maximum value for an 8-bit signed
integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]

14 Combining Unlike Classes

14-4

C =

 50

 127

Note You can find the maximum or minimum values for any MATLAB integer type using
the intmax and intmin functions. For floating-point types, use realmax and realmin.

Example of Combining Signed with Unsigned

Now do the same exercise with signed and unsigned integers. Again, the left-most
element determines the data type for all elements in the resulting matrix:

A = [int8(-100) uint8(100)]

A =

 -100 100

B = [uint8(100) int8(-100)]

B =

 100 0

The element int8(-100) is set to zero because it is no longer signed.

MATLAB evaluates each element prior to concatenating them into a combined array. In
other words, the following statement evaluates to an 8-bit signed integer (equal to 50)
and an 8-bit unsigned integer (unsigned -50 is set to zero) before the two elements are
combined. Following the concatenation, the second element retains its zero value but
takes on the unsigned int8 type:

A = [int8(50), uint8(-50)]

A =

 50 0

 Combining Integer and Noninteger Data

14-5

Combining Integer and Noninteger Data

If you combine integers with double, single, or logical classes, all elements of
the resulting matrix are given the data type of the left-most integer. For example, all
elements of the following vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

14 Combining Unlike Classes

14-6

Combining Cell Arrays with Non-Cell Arrays

Combining a number of arrays in which one or more is a cell array returns a new cell
array. Each of the original arrays occupies a cell in the new array:

A = [100, {uint8(200), 300}, 'MATLAB'];

whos A

 Name Size Bytes Class Attributes

 A 1x4 477 cell

Each element of the combined array maintains its original class:

fprintf('Classes: %s %s %s %s\n',...

 class(A{1}),class(A{2}),class(A{3}),class(A{4}))

Classes: double uint8 double char

 Empty Matrices

14-7

Empty Matrices

If you construct a matrix using empty matrix elements, the empty matrices are ignored
in the resulting matrix:

A = [5.36; 7.01; []; 9.44]

A =

 5.3600

 7.0100

 9.4400

14 Combining Unlike Classes

14-8

Concatenation Examples

In this section...

“Combining Single and Double Types” on page 14-8
“Combining Integer and Double Types” on page 14-8
“Combining Character and Double Types” on page 14-9
“Combining Logical and Double Types” on page 14-9

Combining Single and Double Types

Combining single values with double values yields a single matrix. Note that
5.73*10^300 is too big to be stored as a single, thus the conversion from double to
single sets it to infinity. (The class function used in this example returns the data
type for the input value).

x = [single(4.5) single(-2.8) pi 5.73*10^300]

x =

 4.5000 -2.8000 3.1416 Inf

class(x) % Display the data type of x

ans =

 single

Combining Integer and Double Types

Combining integer values with double values yields an integer matrix. Note that the
fractional part of pi is rounded to the nearest integer. (The int8 function used in this
example converts its numeric argument to an 8-bit integer).

x = [int8(21) int8(-22) int8(23) pi 45/6]

x =

 21 -22 23 3 8

class(x)

ans =

 int8

 Concatenation Examples

14-9

Combining Character and Double Types

Combining character values with double values yields a character matrix.
MATLAB converts the double elements in this example to their character
equivalents:

x = ['A' 'B' 'C' 68 69 70]

x =

 ABCDEF

class(x)

ans =

 char

Combining Logical and Double Types

Combining logical values with double values yields a double matrix. MATLAB
converts the logical true and false elements in this example to double:

x = [true false false pi sqrt(7)]

x =

 1.0000 0 0 3.1416 2.6458

class(x)

ans =

 double

15

Using Objects

15 Using Objects

15-2

Copying Objects

In this section...

“Two Copy Behaviors” on page 15-2
“Value Object Copy Behavior” on page 15-2
“Handle Object Copy Behavior” on page 15-3
“Testing for Handle or Value Class” on page 15-6

Two Copy Behaviors

There are two fundamental kinds of MATLAB classes—handles and values.

Value classes create objects that behave like ordinary MATLAB variables with respect
to copy operations. Copies are independent values. Operations that you perform on one
object do not affect copies of that object.

Handle classes create objects that behave as references. A handle, and all copies of this
handle, refer to the same object. When you create a handle object, you copy the handle,
but not the data referenced by the object's properties. Any operations you perform on a
handle object are visible from all handles that reference that object.

Value Object Copy Behavior

MATLAB numeric variables are value objects. For example, when you copy a to the
variable b, both variables are independent of each other. Changing the value of a does
not change the value of b:

a = 8;

b = a;

Now reassign a. b is unchanged:

a = 6;

b

b =

 8

Clearing a does not affect b:

 Copying Objects

15-3

clear a

b

b =

 8

Value Object Properties

The copy behavior of values stored as properties in value objects is the same as numeric
variables. For example, suppose vobj1 is a value object with property a:

vobj1.a = 8;

If you copy vobj1 to vobj2, and then change the value of vobj1 property a, the value of
the copied object's property, vobj2.a, is unaffected:

vobj2 =vobj1;

vobj1.a = 5;

vobj2.a

ans =

 8

Handle Object Copy Behavior

Here is a handle class called HdClass that defines a property called Data.

classdef HdClass < handle

 properties

 Data

 end

 methods

 function obj = HdClass(val)

 if nargin > 0

 obj.Data = val;

 end

 end

 end

end

Create an object of this class:

hobj1 = HdClass(8)

15 Using Objects

15-4

Because this statement is not terminated with a semicolon, MATLAB displays
information about the object:

hobj1 =

 HdClass with properties:

 Data: 8

The variable hobj1 is a handle that references the object created. Copying hobj1 to
hobj2 results in another handle referring to the same object:

hobj2 = hobj1

hobj2 =

 HdClass with properties:

 Data: 8

Because handles reference the object, copying a handle copies the handle to a new
variable name, but the handle still refers to the same object. For example, given that
hobj1 is a handle object with property Data:

hobj1.Data

ans =

 8

Change the value of hobj1's Data property and the value of the copied object's Data
property also changes:

hobj1.Data = 5;

hobj2.Data

ans =

 5

Because hobj2 and hobj1 are handles to the same object, changing the copy, hobj2,
also changes the data you access through handle hobj1:

hobj2.Data = 17;

hobj1.Data

 Copying Objects

15-5

ans =

 17

Reassigning Handle Variables

Reassigning a handle variable produces the same result as reassigning any MATLAB
variable. When you create a new object and assign it to hobj1:

hobj1 = HdClass(3.14);

hobj1 references the new object, not the same object referenced previously (and still
referenced by hobj2).

Clearing Handle Variables

When you clear a handle from the workspace, MATLAB removes the variable, but does
not remove the object referenced by the other handle. However, if there are no references
to an object, MATLAB destroys the object.

Given hobj1 and hobj2, which both reference the same object, you can clear either
handle without affecting the object:

hobj1.Data = 2^8;

clear hobj1

hobj2

hobj2 =

 HdClass with properties:

 Data: 256

If you clear both hobj1 and hobj2, then there are no references to the object. MATLAB
destroys the object and frees the memory used by that object.

Deleting Handle Objects

To remove an object referenced by any number of handles, use delete. Given hobj1 and
hobj2, which both refer to the same object, delete either handle. MATLAB deletes the
object:

hobj1 = HdClass(8);

hobj2 = hobj1;

15 Using Objects

15-6

delete(hobj1)

hobj2

hobj2 =

 handle to deleted HdClass

Use clear to remove the variable from the workspace.

Modifying Objects

When you pass an object to a function, MATLAB passes a copy of the object into the
function workspace. If the function modifies the object, MATLAB modifies only the copy
of the object that is in the function workspace. The differences in copy behavior between
handle and value classes are important in such cases:

• Value object — The function must return the modified copy of the object. To modify
the object in the caller’s workspace, assign the function output to a variable of the
same name

• Handle object — The copy in the function workspace refers to the same object.
Therefore, the function does not have to return the modified copy.

Testing for Handle or Value Class

To determine if an object is a handle object, use the isa function. If obj is an object of
some class, this statement determines if obj is a handle:

isa(obj,'handle')

For example, the containers.Map class creates a handle object:
hobj = containers.Map({'Red Sox','Yankees'},{'Boston','New York'});

isa(hobj,'handle')

ans =

 1

hobj is also a containers.Map object:

isa(hobj,'containers.Map')

ans =

 Copying Objects

15-7

 1

Querying the class of hobj shows that it is a containers.Map object:

class(hobj)

ans =

containers.Map

The class function returns the specific class of an object.

16

Defining Your Own Classes

All MATLAB data types are implemented as object-oriented classes. You can add data
types of your own to your MATLAB environment by creating additional classes. These
user-defined classes define the structure of your new data type, and the functions, or
methods, that you write for each class define the behavior for that data type.

These methods can also define the way various MATLAB operators, including arithmetic
operations, subscript referencing, and concatenation, apply to the new data types. For
example, a class called polynomial might redefine the addition operator (+) so that it
correctly performs the operation of addition on polynomials.

With MATLAB classes you can

• Create methods that overload existing MATLAB functionality
• Restrict the operations that are allowed on an object of a class
• Enforce common behavior among related classes by inheriting from the same parent

class
• Significantly increase the reuse of your code

For more information, see “Role of Classes in MATLAB”.

Scripts and Functions

17

Scripts

• “Create Scripts” on page 17-2
• “Add Comments to Programs” on page 17-4
• “Run Code Sections” on page 17-6
• “Scripts vs. Functions” on page 17-16

17 Scripts

17-2

Create Scripts

Scripts are the simplest kind of program file because they have no input or output
arguments. They are useful for automating series of MATLAB commands, such as
computations that you have to perform repeatedly from the command line or series of
commands you have to reference.

You can create a new script in the following ways:

• Highlight commands from the Command History, right-click, and select Create
Script.

•
Click the New Script button on the Home tab.

• Use the edit function. For example, edit new_file_name creates (if the file does
not exist) and opens the file new_file_name. If new_file_name is unspecified,
MATLAB opens a new file called Untitled.

After you create a script, you can add code to the script and save it. For example, you
can save this code that generates random numbers between 0 and 100 as a script called
numGenerator.m.

columns = 10000;

rows = 1;

bins = columns/100;

rng(now);

list = 100*rand(rows,columns);

histogram(list,bins)

Save your script and run the code using either of these methods:

• Type the script name on the command line and press Enter. For example, to run the
numGenerator.m script, type numGenerator.

•
Click the Run button on the Editor tab

You also can run the code from a second program file. To do this, add a line of code with
the script name to the second program file. For example, to run the numGenerator.m
script from a second program file, add the line numGenerator; to the file. MATLAB
runs the code in numGenerator.m when you run the second file.

 Create Scripts

17-3

When execution of the script completes, the variables remain in the MATLAB workspace.
In the numGenerator.m example, the variables columns, rows, bins, and list remain
in the workspace. To see a list of variables, type whos at the command prompt. Scripts
share the base workspace with your interactive MATLAB session and with other scripts.

More About
• “Run Code Sections” on page 17-6
• “Scripts vs. Functions” on page 17-16
• “Base and Function Workspaces” on page 19-9
• “Create Live Scripts” on page 18-2

17 Scripts

17-4

Add Comments to Programs

When you write code, it is a good practice to add comments that describe the code.
Comments allow others to understand your code, and can refresh your memory when you
return to it later.

Add comments to MATLAB code using the percent (%) symbol. Comment lines can appear
anywhere in a program file, and you can append comments to the end of a line of code.
For example,

% Add up all the vector elements.

y = sum(x) % Use the sum function.

In live scripts, you can also describe a process or code by inserting lines of text before
and after code. Text lines provide additional flexibility such as standard formatting
options, and the insertion of images, hyperlinks, and equations. For more information,
see “Create Live Scripts” on page 18-2.

Note: When you have a MATLAB code file (.m) containing text that has characters in
a different encoding than that of your platform, when you save or publish your file,
MATLAB displays those characters as garbled text. Live scripts (.mlx) support

Comments are also useful for program development and testing—comment out any code
that does not need to run. To comment out multiple lines of code, you can use the block
comment operators, %{ and %}:

a = magic(3);

%{

sum(a)

diag(a)

sum(diag(a))

%}

sum(diag(fliplr(a)))

The %{ and %} operators must appear alone on the lines that immediately precede and
follow the block of help text. Do not include any other text on these lines.

To comment out part of a statement that spans multiple lines, use an ellipsis (...)
instead of a percent sign. For example,

header = ['Last Name, ', ...

 Add Comments to Programs

17-5

 'First Name, ', ...

 ... 'Middle Initial, ', ...

 'Title']

The MATLAB Editor includes tools and context menu items to help you add, remove, or
change the format of comments for MATLAB, Java, and C/C++ code. For example, if you
paste lengthy text onto a comment line, such as
% This is a program that has a comment that is a little more than 75 columns wide.

disp('Hello, world')

and then press the button next to Comment on the Editor or Live Editor tab, the
Editor wraps the comment:
% This is a program that has a comment that is a little more than 75

% columns wide.

disp('Hello, world')

By default, as you type comments in the Editor, the text wraps when it reaches a
column width of 75. To change the column where the comment text wraps, or to disable
automatic comment wrapping, adjust the Editor/Debugger Language preference
settings labeled Comment formatting.

The Editor does not wrap comments with:

• Code section titles (comments that begin with %%)
• Long contiguous strings, such as URLs
• Bulleted list items (text that begins with * or #) onto the preceding line

Preference changes do not apply in live scripts.

Related Examples
• “Add Help for Your Program” on page 19-5
• “Create Scripts” on page 17-2
• “Create Live Scripts” on page 18-2

More About
• “Editor/Debugger Preferences”

17 Scripts

17-6

Run Code Sections

In this section...

“Divide Your File into Code Sections” on page 17-6
“Evaluate Code Sections” on page 17-6
“Navigate Among Code Sections in a File” on page 17-8
“Example of Evaluating Code Sections” on page 17-8
“Change the Appearance of Code Sections” on page 17-12
“Use Code Sections with Control Statements and Functions” on page 17-12

Divide Your File into Code Sections

MATLAB files often consist of many commands. You typically focus efforts on a single
part of your program at a time, working with the code in chunks. Similarly, when
explaining your files to others, often you describe your program in chunks. To facilitate
these processes, use code sections, also known as code cells or cell mode. A code section
contains contiguous lines of code that you want to evaluate as a group in a MATLAB
script, beginning with two comment characters (%%).

To define code section boundaries explicitly, insert section breaks using these methods:

• On the Editor tab, in the Edit section, in the Comment button group, click

 .
• Enter two percent signs (%%) at the start of the line where you want to begin the new

code section.

The text on the same line as %% is called the section title . Including section titles is
optional, however, it improves the readability of the file and appears as a heading if you
publish your code.

Evaluate Code Sections

As you develop a MATLAB file, you can use the Editor section features to evaluate the
file section-by-section. This method helps you to experiment with, debug, and fine-tune

 Run Code Sections

17-7

your program. You can navigate among sections, and evaluate each section individually.
To evaluate a section, it must contain all the values it requires, or the values must exist
in the MATLAB workspace.

The section evaluation features run the section code currently highlighted in yellow.
MATLAB does not automatically save your file when evaluating individual code sections.
The file does not have to be on your search path.

This table provides instructions on evaluating code sections.

Operation Instructions

Run the code in the
current section.

• Place the cursor in the code section.
•

On the Editor tab, in the Run section, click Run
Section.

Run the code in the
current section, and then
move to the next section.

• Place the cursor in the code section.
•

On the Editor tab, in the Run section, click Run
and Advance.

Run all the code in the
file.

• Type the saved script name in the Command Window.
•

On the Editor tab, in the Run section, click Run.

Note: You cannot debug when running individual code sections. MATLAB ignores any
breakpoints.

Increment Values in Code Sections

You can increment numbers within a section, rerunning that section after every change.
This helps you fine-tune and experiment with your code.

To increment or decrement a number in a section:

1 Highlight or place your cursor next to the number.
2 Right-click to open the context menu.
3 Select Increment Value and Run Section. A small dialog box appears.

17 Scripts

17-8

4 Input appropriate values in the / text box or / text box.
5 Click the , , , or button to add to, subtract from, multiply, or divide the

selected number in your section.

MATLAB runs the section after every click.

Note MATLAB software does not automatically save changes you make to the numbers
in your script.

Navigate Among Code Sections in a File

You can navigate among sections in a file without evaluating the code within those
sections. This facilitates jumping quickly from section to section within a file. You might
do this, for example, to find specific code in a large file.

Operation Instructions

Move to the next section. •
On the Editor tab, in the Run section, click
Advance.

Move to the previous
section.

• Press Ctrl + Up arrow.

Move to a specific section. •
On the Editor tab, in the Navigate section, use the
Go To to move the cursor to a selected section.

Example of Evaluating Code Sections

This example defines two code sections in a file called sine_wave.m and then
increments a parameter to adjust the created plot. To open this file in your Editor, run
the following command, and then save the file to a local folder:

 Run Code Sections

17-9

edit(fullfile(matlabroot,'help','techdoc','matlab_env',...

'examples','sine_wave.m'))

After the file is open in your Editor:

1 Insert a section break and the following title on the first line of the file.

 %% Calculate and Plot Sine Wave

2 Insert a blank line and a second section break after plot(x,y). Add a section title,
Modify Plot Properties, so that the entire file contains this code:

%% Calculate and Plot Sine Wave

% Define the range for x.

% Calculate and plot y = sin(x).

x = 0:1:6*pi;

y = sin(x);

plot(x,y)

%% Modify Plot Properties

title('Sine Wave')

xlabel('x')

ylabel('sin(x)')

fig = gcf;

fig.MenuBar = 'none';

3 Save the file.
4 Place your cursor in the section titled Calculate and Plot Sine Wave. On the

Editor tab, in the Run section, click Run Section.

A figure displaying a course plot of sin(x) appears.

17 Scripts

17-10

5 Smooth the sine plot.

1 Highlight 1 in the statement: x = 0:1:6*pi; .
2 Right-click and select Increment Value and Run Section. A small dialog box

appears.

3 Type 2 in the / text box.
4 Click the button several times.

The sine plot becomes smoother after each subsequent click.

 Run Code Sections

17-11

5 Close the Figure and save the file.
6 Run the entire sine_wave.m file. A smooth sine plot with titles appears in a new

Figure.

17 Scripts

17-12

Change the Appearance of Code Sections

You can change how code sections appear within the MATLAB Editor. MATLAB
highlights code sections in yellow, by default, and divides them with horizontal lines.
When the cursor is positioned in any line within a section, the Editor highlights the
entire section.

To change how code sections appear:

1
On the Home tab, in the Environment section, click Preferences.

The Preference dialog box appears.
2 In the left pane, select MATLAB > Colors > Programming Tools.
3

Under Section display options, select the appearance of your code sections.

You can choose whether to highlight the sections, the color of the highlighting, and
whether dividing lines appear between code sections.

Use Code Sections with Control Statements and Functions

Unexpected results can appear when using code sections within control statements and
functions because MATLAB automatically inserts section breaks that do not appear in
the Editor unless you insert section breaks explicitly. This is especially true when nested
code is involved. Nested code occurs wherever you place a control statement or function
within the scope of another control statement or function.

MATLAB automatically defines section boundaries in a code block, according to this
criteria:

• MATLAB inserts a section break at the top and bottom of a file, creating a code
section that encompasses the entire file. However, the Editor does not highlight the
resulting section, which encloses the entire file, unless you add one or more explicit
code sections to the file.

 Run Code Sections

17-13

• If you define a section break within a control flow statement (such as an if or while
statement), MATLAB automatically inserts section breaks at the lines containing the
start and end of the statement.

• If you define a section break within a function, MATLAB inserts section breaks at
the function declaration and at the function end statement. If you do not end the
function with an end statement, MATLAB behaves as if the end of the function occurs
immediately before the start of the next function.

If an automatic break occurs on the same line as a break you insert, they collapse into
one section break.

Nested Code Section Breaks

The following code illustrates the concept of nested code sections:

t = 0:.1:pi*4;

y = sin(t);

for k = 3:2:9

 %%

 y = y + sin(k*t)/k;

 if ~mod(k,3)

 %%

 display(sprintf('When k = %.1f',k));

 plot(t,y)

 end

end

If you copy and paste this code into a MATLAB Editor, you see that the two section
breaks create three nested levels:

• At the outermost level of nesting, one section spans the entire file.

17 Scripts

17-14

MATLAB only defines section in a code block if you specify section breaks at the same
level within the code block. Therefore, MATLAB considers the cursor to be within the
section that encompasses the entire file.

• At the second level of nesting, a section exists within the for loop.

• At the third-level of nesting, one section exists within the if statement.

 Run Code Sections

17-15

More About
• “Create Scripts” on page 17-2
• “Create Live Scripts” on page 18-2
• “Scripts vs. Functions” on page 17-16

17 Scripts

17-16

Scripts vs. Functions

This topic discusses the differences between scripts and functions, and shows how to
convert a script to a function.

Program files can be scripts that simply execute a series of MATLAB statements, or they
can be functions that also accept input arguments and produce output. Both scripts and
functions contain MATLAB code, and both are stored in text files with a .m extension.
However, functions are more flexible and more easily extensible.

For example, create a script in a file named triarea.m that computes the area of a
triangle:

b = 5;

h = 3;

a = 0.5*(b.* h)

After you save the file, you can call the script from the command line:

triarea

a =

 7.5000

To calculate the area of another triangle using the same script, you could update the
values of b and h in the script and rerun it. Each time you run it, the script stores the
result in a variable named a that is in the base workspace.

However, instead of manually updating the script each time, you can make your program
more flexible by converting it to a function. Replace the statements that assign values to
b and h with a function declaration statement. The declaration includes the function
keyword, the names of input and output arguments, and the name of the function.

function a = triarea(b,h)

a = 0.5*(b.* h);

After you save the file, you can call the function with different base and height values
from the command line without modifying the script:

a1 = triarea(1,5)

a2 = triarea(2,10)

a3 = triarea(3,6)

a1 =

 Scripts vs. Functions

17-17

 2.5000

a2 =

 10

a3 =

 9

Functions have their own workspace, separate from the base workspace. Therefore, none
of the calls to the function triarea overwrite the value of a in the base workspace.
Instead, the function assigns the results to variables a1, a2, and a3.

Related Examples
• “Create Scripts” on page 17-2
• “Create Live Scripts” on page 18-2
• “Create Functions in Files” on page 19-2

More About
• “Base and Function Workspaces” on page 19-9

18

Live Scripts

18 Live Scripts

18-2

Create Live Scripts

In this section...

“Open New Live Script” on page 18-2
“Run Code and Display Output” on page 18-3
“Format Live Scripts” on page 18-6

Live scripts are program files that contain your code, output, and formatted text
together, in a single interactive environment called the Live Editor. In live scripts,
you can write your code and view the generated output and graphics with the code
that produced it. Add formatted text, images, hyperlinks, and equations to create an
interactive narrative that can be shared with others.

Open New Live Script

To open a new live script, use one of these methods:

•
On the Home tab, in the New drop-down menu, select Live Script .

• Highlight commands from the Command History, right-click, and select Create Live
Script.

 Create Live Scripts

18-3

• Use the edit function. To ensure that a live script is created, specify a .mlx
extension. For example:

edit penny.mlx

If an extension is not specified, MATLAB defaults to a file with .m extension, which
only supports plain code.

Open Existing Script as Live Script

If you have existing scripts, you can open them as live scripts. Opening a script as a live
script creates a copy of the file, and leaves the original file untouched. MATLAB converts
publishing markup from the script to formatted content in the new live script.

You can only open scripts as live scripts. Functions and classes are not supported in the
Live Editor, and cannot be converted.

To open an existing script (.m) as a live script (.mlx), use one of these methods:

• From the Editor — Open the script in the Editor, right-click the document tab, and
select Open scriptName as Live Script from the context menu. You can also go
to the Editor tab, click Save and select Save As. Then, set the Save as type: to
MATLAB Live Scripts (*.mlx) and click Save.

• From the Current Folder browser — Right-click the file in the Current Folder browser
and select Open as Live Script from the context menu.

Note: You must use one of the described conversion methods to convert your script into
a live script. Simply renaming the script with a .mlx extension does not work, and can
corrupt the file.

Run Code and Display Output

After you create a live script, you can add code. For example, you can add this code that
plots a vector of random data and draws a horizontal line on the plot at the mean.

n = 50;

r = rand(n,1);

plot(r)

m = mean(r);

18 Live Scripts

18-4

hold on

plot([0,n],[m,m])

hold off

title('Mean of Random Uniform Data')

To run the code, click the vertical striped bar to the left of the code. Alternatively, go to
the Live Editor tab and in the Run section, click Run Section.

By default, MATLAB displays the output to the right of the code. Each output displays
with the line that creates it, like in the command window.

To move the output in line with the code, use either of these methods:

•
In top right of the Editor window, click the icon.

 Create Live Scripts

18-5

• Go to the View tab and in the Layout section, click the Output Inline button.

You can further modify the output display in these ways:

• Change the size of the output display panel — With output on the right, drag left
or right on the resizer bar between the code and output.

• Clear all output — Right-click in the script and select Clear All Output.
Alternatively, go to the View tab and in the Output section, click the Clear all
Output button.

• Disable the alignment of output to code — With output on the right, right-click
the output section and select Disable Synchronous Scrolling.

• Open a generated output figure in a separate figure window — Double-click
the image.

18 Live Scripts

18-6

You can save your script before or after running. When you save your live script,
MATLAB automatically saves it with a .mlx extension.

Format Live Scripts

You can add formatted text, hyperlinks, images, and equations to your live scripts to
create a presentable document to share with others.

To insert an item, go to the Live Editor tab and in the Insert section, select one of these
options:

•
 Code — This inserts a blank line of code into your live script. You can insert a

code line before, after, or between text lines.
•

 Text — This inserts a blank line of text into your live script. A text line can
contain formatted text, hyperlinks, images, or equations. You can insert a text line
before, after, or between code lines.

•
 Section Break — This inserts a section break into your live script. Insert a

section break to divide your live script into manageable sections that you can evaluate
individually. In live scripts, a section can consist of code, text, and output. For more
information, see “Run Sections in Live Scripts” on page 18-8.

• Equation — This inserts an equation into your live script. Equations can only
be added in text lines. If you insert an equation into a code line, MATLAB places
the equation in a new text line directly under the selected code line. For more
information, see “Insert Equations into Live Scripts” on page 18-13

• Hyperlink — This inserts a hyperlink into your live script. Hyperlinks can only
be added in text lines. If you insert a hyperlink into a code line, MATLAB places the
hyperlink in a new text line directly under the selected code line.

• Image — This inserts an image into your live script. Images can only be added in
text lines. If you insert an image into a code line, MATLAB places the image in a new
text line directly under the selected code line.

Format Text

You can further format text using any of the styles included in the Text Style gallery.
Styles include Normal, Heading, Title, Bulleted List, and Numbered List.

 Create Live Scripts

18-7

You also can apply standard formatting options from the Format section, including bold
, italic , underline , and monospace .

Related Examples
• “Run Sections in Live Scripts” on page 18-8
• “Insert Equations into Live Scripts” on page 18-13
• “Share Live Scripts” on page 18-11
• “What Is a Live Script?” on page 18-22

18 Live Scripts

18-8

Run Sections in Live Scripts

Divide Your File Into Sections

Live scripts often contain many commands and lines of text. You typically focus efforts on
a single part of your program at a time, working with the code and related text in pieces.
For easier document management and navigation, divide your file into sections. Code,
output, and related text can all appear together, in a single section.

To insert a section break into your live script, go to the Live Editor tab and in the
Insert section, click the Section Break button. The new section is highlighted in blue,
indicating that it is selected. A vertical striped bar to the left of the section indicates that
the section is stale. A stale section is a section that has not yet been run, or that has been
modified since it was last run.

This image shows a new blank section in a live script.

To delete a section break, click the beginning of the line directly after the section break
and press Backspace. You can also click the end of the line directly before the section
break and press Delete.

Evaluate Sections

Run your live script either by evaluating each section individually or by running all
the code at once. To evaluate a section individually, it must contain all the values it
requires, or the values must exist in the MATLAB workspace. Section evaluation runs
the currently selected section, highlighted in blue. If there is only one section in your
program file, the section is not highlighted, as it is always selected.

This table describes different ways to run your code.

Operation Instructions

Run the code in the
selected section.

• Click the bar to the left of the section. If the bar is not
visible, hover the mouse on the left side of the section
until the bar appears.

 Run Sections in Live Scripts

18-9

Operation Instructions

OR

• On the Live Editor tab, in the Run section, click
Run Section.

Run the code in the
selected section, and then
move to the next section.

• On the Live Editor tab, in the Run section, select Run
Section > Run Section and Advance.

Run the code in the
selected section, and then
run all the code after the
selected section.

• On the Live Editor tab, in the Run section, select Run
Section > Run to End.

Run all the code in the
file.

• On the Live Editor tab, in the Run section, click
Run All.

OR

• Type the saved script name in the Command Window.

View Code Status

While your program is running, a status indicator appears at the top left of the Editor
window. A gray blinking bar to the left of a line indicates the line that MATLAB is
evaluating. To navigate to the line, click the status indicator.

If an error occurs while MATLAB is running your program, the status indicator turns
solid red . To navigate to the error, click the status indicator. An error icon to the
right of the line of code indicates the error. The corresponding error message is displayed
as an output.

18 Live Scripts

18-10

Debugging

You can diagnose problems with your live script using several debugging methods:

• Visually — Remove semi-colons from the end of code lines to view output and
determine where the problem occurs. To make visual debugging easier, live scripts
display each output with the line of code that creates it.

• Programmatically — Use the command line debugger to create and navigate through
breakpoints. For a list of available command line debugging functions, see the
“Debugging” documentation.

Note: Debugging using the graphical debugger is not supported in live scripts. For more
information, see “What Is a Live Script?” on page 18-22

Related Examples
• “Create Live Scripts” on page 18-2
• “Share Live Scripts” on page 18-11
• “What Is a Live Script?” on page 18-22

 Share Live Scripts

18-11

Share Live Scripts
You can share live scripts with others for teaching or demonstration, or to provide
readable, external documentation of your code. You can share live scripts with other
MATLAB users, or as static PDF and HTML files for viewing outside of MATLAB.

This table shows the different ways to share live scripts.

If you want to ... Instructions

Share your live script as an interactive
document.

Distribute the live script file (.mlx).
Recipients of the file can open and view the
file in MATLAB in the same state that you
last saved it in. This includes generated
output.

MATLAB supports live scripts in versions
R2016a and above. You can open live
scripts as code only files in MATLAB
versions R2014b, R2015a, and R2015b.

Caution Saving a live script in MATLAB
versions R2014b, R2015a, and R2015b
causes all formatted text, images,
hyperlinks, equations, and generated
output content to be lost.

Share your live script with users of
previous MATLAB versions.

Save the live script as a plain code file
(.m) and distribute it. Recipients of the file
can open and view the file in MATLAB.
MATLAB converts formatted content from
the live script to publish markup in the
new script.

For more information, see “Save Live Script
as Script” on page 18-26.

Share your live script as a static document
capable of being viewed outside of
MATLAB.

Export the script to a standard format.
Available formats include PDF and HTML.

To export your live script to one of these
formats, on the Live Editor tab, select

18 Live Scripts

18-12

If you want to ... Instructions

Save > Export to PDF or Save > Export
to HTML.

The saved file closely resembles the
appearance of your live script when viewed
in the Editor with output inline.

Related Examples
• “Create Live Scripts” on page 18-2
• “What Is a Live Script?” on page 18-22

 Insert Equations into Live Scripts

18-13

Insert Equations into Live Scripts

To describe a mathematical process or method used in your code, insert equations into
your live scripts. You can insert equations only in text lines. If you insert an equation
into a code line, MATLAB places the equation into a new text line directly under the
selected code line.

To insert an equation:

1 Go to the Live Editor tab and in the Insert section, click the Equation button.
2 Enter a LaTeX expression in the dialog box that appears. For example, you can enter

\sin(x) = \sum_{n=0}^{\infty}{\frac{(-1)^n x^{2n+1}}{(2n+1)!}}.

The preview pane shows a preview of equation as it would appear in the live script.

18 Live Scripts

18-14

3 Press OK to insert the equation into your live script.

LaTeX expressions describe a wide range of equations. This table shows several examples
of LaTeX expressions and their appearance when inserted into a live script.

LaTeX Expression Equation in Live Script

a^2 + b^2 = c^2
a b c

2 2 2
+ =

\int_{0}^{2} x^2\sin(x) dx
x x dx

2

0

2

Ú sin()

\sin(x) = \sum_{n=0}^{\infty}{\frac{(-1)^n

x^{2n+1}}{(2n+1)!}} sin()
()

()!
x

x

n

n n

n

=
-

+

+

=

•

Â
1

2 1

2 1

0

{a,b,c} \neq \{a,b,c\} a b c a b c, , { , , }π

x^{2} \geq 0\qquad \text{for all }x\in

\mathbf{R}
x x

2
0≥ Œfor all R

 Insert Equations into Live Scripts

18-15

Supported LaTeX Commands

MATLAB supports most standard LaTeX math mode commands. These tables show a list
of supported LaTeX commands.

Greek/Hebrew Letters

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

α alpha ν nu ξ xi

β beta ω omega ζ zeta

χ chi о omicron ɛ varepsilon

δ delta ϕ phi φ varphi

ε epsilon π pi ϖ varpi

η eta ψ psi ϱ varrho

v gamma ρ rho ς varsigma

ι iota σ sigma J vartheta

κ kappa τ tau א aleph

λ lambda θ theta
μ mu υ upsilon

Δ Delta Φ Phi Θ Theta

Γ Gamma Π Pi ϒ Upsilon

Λ Lambda Ψ Psi Ξ Xi

Ω Omega Σ Sigma

Operator Symbols

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

* ast ± pm ∩ cap

☆ star ∓ mp ∪ cup

18 Live Scripts

18-16

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

· cdot ∐ amalg ⊎ uplus

○ circ ⊙ odot ⊓ sqcap

• bullet ⊖ ominus ⊔ sqcup

⋄ diamond ⊕ oplus ∧ wedge, land
∖ setminus ⊘ oslash ∨ vee, lor
× times ⊗ otimes ◁ triangleleft

÷ div † dagger ▷ triangleright

⊥ bot ‡ ddagger V bigtriangleup

⊤ top ≀ wr ‰ bigtriangledown

∑ sum ∏ prod ∫ int, intop

â biguplus
≈

bigoplus ⁄ bigvee

« bigcap
ƒ

bigotimes Ÿ bigwedge

» bigcup e bigodot ò bigsqcup

Relation Symbols

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

≡ equiv < lt > gt

≅ cong ≤ le, leq ≥ ge, geq
≠ neq, ne ≺ prec ≻ succ

∼ sim ≼ preceq ≽ succeq

≃ simeq ≪ ll ≫ gg

≈ approx ⊂ subset ⊃ supset

≍ asymp ⊆ subseteq ⊇ supseteq

≐ doteq ⊑ sqsubseteq ⊒ sqsupseteq

∝ propto ∣ mid ∊ in

 Insert Equations into Live Scripts

18-17

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

⊧ models ∥ parallel ∉ notin

⊥ perp ⊢ vdash ∍ ni, owns
⋈ bowtie ⊣ dashv ⇔ iff

Arrows

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

← leftarrow → rightarrow ↑ uparrow

⇐ Leftarrow ⇒ Rightarrow ⇑ Uparrow

longleftarrow longrightarrow↓ downarrow

Longleftarrow Longrightarrow⇓ Downarrow

↩ hookleftarrow↪ hookrightarrowb updownarrow

↽ leftharpoondown⇁ rightharpoondownc Updownarrow

↼ leftharpoonup⇀ rightharpoonuṕ leftrightarrow

↙ swarrow ↗ nearrow ¤ Leftrightarrow

↖ nwarrow ↘ searrow longleftrightarrow

↦ mapsto longmapsto Longleftrightarrow

Brackets

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

{ lbrace } rbrace | vert

[lbrack] rbrack ‖ Vert

〈 langle 〉 rangle \ backslash

⌈ lceil ⌉ rceil
⌊ lfloor ⌋ rfloor

18 Live Scripts

18-18

Sample LaTeX

Command
Sample LaTeX

Command

big, bigl,
bigr, bigm

abc{ } brace

Big, Bigl,
Bigr, Bigm

abc[] brack

bigg, biggl,
biggr, biggm

abc() choose

Bigg, Biggl,
Biggr, Biggm

Misc Symbols

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

∞ infty ∀ forall ℘ wp

∇ nabla ∃ exists ∠ angle

∂ partial ∆ emptyset △ triangle

ℑ Im 1 imath ħ hbar

ℜ Re jmath ′ prime

… dots, ldots ℓ ell : colon

L cdots ¬ not, lnot,
neg

◊ cdotp

O ddots ÷ surd
.

ldotp

⋮ vdots → to ← gets

Accents

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

á acute &&a ddot %a tilde

 Insert Equations into Live Scripts

18-19

Symbol LaTeX

Command
Symbol LaTeX

Command
Symbol LaTeX

Command

a bar &a dot r

a
vec

(

a
breve à grave

a

˙ check
â

hat

Functions

Sample LaTeX

Command
Sample LaTeX

Command
Sample LaTeX

Command

arccos arccos det det ln ln

arcsin arcsin dim dim log log

arctan arctan exp exp max max

arg arg gcd gcd min min

cos cos hom hom Pr Pr

cosh cosh ker ker sec sec

cot cot lg lg sin sin

coth coth lim lim sinh sinh

csc csc lim inf liminf sup sup

deg deg limsup limsup tan tan

Math Constructs

Sample LaTeX

Command
Sample LaTeX

Command
Sample LaTeX

Command

abc

xyz

frac a

b

over
b

a stackrel

18 Live Scripts

18-20

Sample LaTeX

Command
Sample LaTeX

Command
Sample LaTeX

Command

abc
sqrt a

b

È

Î
Í

˘

˚
˙

overwithdelimsa b

c d

Ê

Ë
Á

ˆ

¯
˜

pmatrix

mod a bmod
abc
s uuuu overleftarrowa b

c d

matrix

moda() pmod
abc
u ruuu overrightarrowa b

c d

begin{array}

abc·
widehat

abc
s ruuu overleftrightarrowa b

c d

Ï
Ì
Ó

begin{cases}

abc²
widetilde

a

b

Ú
limits left, right

White Space

Sample LaTeX

Command
Sample LaTeX

Command
Sample LaTeX

Command

negthinspace abc mathord a b[mathopen

ab thinspace
a bÂ

mathop a b] mathclose

a b enspace a b+ mathbin a b| mathinner

a b quad a b=
mathrel

a b qquad a b, mathpunct

Text Styling

Sample LaTeX

Command
Sample LaTeX

Command
Sample LaTeX

Command

displaystyle ABCDE text A BCDE mathcal

 Insert Equations into Live Scripts

18-21

Sample LaTeX

Command
Sample LaTeX

Command
Sample LaTeX

Command

textstyle ABCDE bf, textbf,
mathbf

ABCDE hbox, mbox

scriptstyle ABCDE it, textit,
mathit

scriptscriptstyleABCDE rm, textrm,
mathrm

Related Examples
• “Create Live Scripts” on page 18-2
• “Share Live Scripts” on page 18-11

External Websites
• http://www.latex-project.org/

http://www.latex-project.org/

18 Live Scripts

18-22

What Is a Live Script?

A MATLAB live script is an interactive document that combines MATLAB code with
embedded output, formatted text, equations, and images in a single environment called
the Live Editor. Live scripts are stored using the Live Script file format in a file with a
.mlx extension.

Use live scripts to

• Visually explore and analyze problems

• Write, execute, and test code in a single interactive environment.
• Run blocks of code individually or as a whole file, and view the results and

graphics with the code that produced them.

• Share richly formatted, executable narratives

• Add titles, headings, and formatted text to describe a process and include LaTeX
equations, images, and hyperlinks as supporting material.

• Save your narratives as richly formatted, executable documents and share them
with colleagues or the MATLAB community, or convert them to HTML or PDF files
for publication.

 What Is a Live Script?

18-23

• Create interactive lectures for teaching

• Combine code and results with formatted text and mathematical equations.
• Create step-by-step lectures and evaluate them incrementally to illustrate a topic.
• Modify code on the fly to answer questions or explore related topics.
• Share lectures with students as interactive documents or in hardcopy format, and

distribute partially completed files as assignments.

18 Live Scripts

18-24

Live Script vs. Script

Live scripts differ from plain code scripts in several ways. This table summarizes the
main differences.

 Live Script Script

File
Format

Live Script file format. For more
information, see “Live Script File
Format (.mlx)” on page 18-27

Plain Text file format

File
Extension

.mlx .m

Output
Display

With code in Editor In Command Window

InternationalizationInteroperable across locales Non-7–bit ASCII characters
are not be compatible across all
locales

Text
Formatting

Add and view formatted text in Editor Use publishing markup to add
formatted text, publish to view

 What Is a Live Script?

18-25

 Live Script Script

Visual
Representation

Requirements

• MATLAB R2016a — MATLAB supports live scripts in versions R2016a and above.
You can open live scripts as code only files in MATLAB versions R2014b, R2015a, and
R2015b.

Caution Saving a live script in MATLAB versions R2014b, R2015a, and R2015b
causes all formatted text, images, hyperlinks, equations, and generated output
content to be lost.

• Operating System — MATLAB supports live scripts in most of the operating systems
supported by MATLAB. For more information, see System Requirements.

Unsupported versions include:

• Red Hat Enterprise Linux 6.
• SUSE Linux Enterprise Desktop versions 13.0 and earlier.
• Debian 7.6 and earlier.

http://www.mathworks.com/support/sysreq/current_release/index.html

18 Live Scripts

18-26

Unsupported Features

When deciding whether to create a live script, it is important to note several features
that the Live Editor does not support:

• Functions and classes — The Live Editor only supports live scripts. To create
functions and classes, create them as plain code files (.m). You then can call the
functions and classes from your live scripts.

• Debugging using the graphical debugger — In the Live Editor, you cannot set
breakpoints graphically or pause the execution of a live script using the Pause
button. To debug your file, see Debugging in live scripts. Alternatively, you can Save
your live script as a plain code file (.m).

If a breakpoint is placed in a plain code file (.m) that is called from a live script,
MATLAB ignores the breakpoint when the live script is executed.

• Editor preferences — The Live Editor ignores most Editor preferences, including
custom keyboard shortcuts and Emacs-style keyboard shortcuts.

• Generating Reports — MATLAB does not include live scripts when generating
reports. This includes Code Analyzer, TODO/FIXME, Help, Contents, Dependency,
and Coverage reports.

Save Live Script as Script

To save a live script as a plain code file (.m).

1 On the Live Editor tab, in the File section, select Save > Save As....
2 In the dialog box that appears, select MATLAB Code files (*.m) as the Save as

type.
3 Click Save.

When saving, MATLAB converts all formatted content to publish markup.

Related Examples
• “Create Live Scripts” on page 18-2
• “Create Scripts” on page 17-2

More About
• “Live Script File Format (.mlx)” on page 18-27

 Live Script File Format (.mlx)

18-27

Live Script File Format (.mlx)
MATLAB stored live scripts using the Live Script file format in a file with a .mlx
extension. The Live Script file format uses Open Packaging Conventions technology,
which is an extension of the zip file format. Code and formatted content are stored in
an XML document separate from the output using the Office Open XML (ECMA-376)
format.

Benefits of Live Script File Format

• Interoperable Across Locales — Live script files support storing and displaying
characters across all locales, facilitating sharing files internationally. For example, if
you create a live script with a Japanese locale setting, and open the live script with a
Russian locale setting, the characters in the live script display correctly.

• Extensible — Live script files can be extended through the ECMA-376 format, which
supports the range of formatting options offered by Microsoft Word. The ECMA-276
format also accommodates arbitrary name-value pairs, should there be a need to
extend the format beyond what the standard offers.

• Forward Compatible — Future versions of live script files are compatible with
previous versions of MATLAB by implementing the ECMA-376 standard's forward
compatibility strategy.

• Backward Compatible — Future versions of MATLAB can support live script files
created by a previous version of MATLAB.

Source Control

To determine and display code differences between live scripts, use the MATLAB
Comparison tool.

If you use source control, you must register the .mlx extension as binary. For more
information, see “Register Binary Files with SVN” on page 30-19 or “Register Binary
Files with Git” on page 30-32.

Related Examples
• “Create Live Scripts” on page 18-2

More About
• “What Is a Live Script?” on page 18-22

18 Live Scripts

18-28

External Websites
• Open Packaging Conventions Fundamentals
• Office Open XML File Formats (ECMA-376)

https://msdn.microsoft.com/en-us/library/windows/desktop/dd742818(v=vs.85).aspx
http://www.ecma-international.org/publications/standards/Ecma-376.htm

19

Function Basics

• “Create Functions in Files” on page 19-2
• “Add Help for Your Program” on page 19-5
• “Run Functions in the Editor” on page 19-7
• “Base and Function Workspaces” on page 19-9
• “Share Data Between Workspaces” on page 19-10
• “Check Variable Scope in Editor” on page 19-15
• “Types of Functions” on page 19-19
• “Anonymous Functions” on page 19-23
• “Local Functions” on page 19-29
• “Nested Functions” on page 19-31
• “Variables in Nested and Anonymous Functions” on page 19-38
• “Private Functions” on page 19-40
• “Function Precedence Order” on page 19-42

19 Function Basics

19-2

Create Functions in Files

This example shows how to create a function in a program file.

Write a Function

Open a file in a text editor. Within the file, declare the function and add program
statements:

function f = fact(n)

f = prod(1:n);

Function fact accepts a single input argument n, and returns the factorial of n in output
argument f.

The definition statement is the first executable line of any function. Function definitions
are not valid at the command line or within a script. Each function definition includes
these elements.

function keyword
(required)

Use lowercase characters for the keyword.

Output arguments
(optional)

If your function returns more than one output, enclose the
output names in square brackets, such as

function [one,two,three] = myfunction(x)

If there is no output, either omit it,

function myfunction(x)

or use empty square brackets:

function [] = myfunction(x)

Function name (required) Valid function names follow the same rules as variable
names. They must start with a letter, and can contain letters,
digits, or underscores.

Note: To avoid confusion, use the same name for both the file
and the first function within the file. MATLAB associates
your program with the file name, not the function name.

 Create Functions in Files

19-3

Input arguments
(optional)

If your function accepts any inputs, enclose their names in
parentheses after the function name. Separate inputs with
commas, such as

function y = myfunction(one,two,three)

If there are no inputs, you can omit the parentheses.

Tip When you define a function with multiple input or output arguments, list any
required arguments first. This allows you to call your function without specifying
optional arguments.

The body of a function can include valid MATLAB expressions, control flow statements,
comments, blank lines, and nested functions. Any variables that you create within a
function are stored within a workspace specific to that function, which is separate from
the base workspace.

Functions end with either an end statement, the end of the file, or the definition line
for another function, whichever comes first. The end statement is required only when a
function in the file contains a nested function (a function completely contained within its
parent).

Program files can contain multiple functions. The first function is the main function,
and is the function that MATLAB associates with the file name. Subsequent functions
that are not nested are called local functions. They are only available to other functions
within the same file.

Save the File

Save the file (in this example, fact.m), either in the current folder or in a folder on the
MATLAB search path. MATLAB looks for programs in these specific locations.

Call the Function

From the command line, call the new fact function to calculate 5!, using the same
syntax rules that apply to calling functions installed with MATLAB:

x = 5;

y = fact(x);

19 Function Basics

19-4

The variables that you pass to the function do not need to have the same names as the
arguments in the function definition line.

See Also
function

More About
• “Files and Folders that MATLAB Accesses”
• “Base and Function Workspaces” on page 19-9
• “Types of Functions” on page 19-19

 Add Help for Your Program

19-5

Add Help for Your Program

This example shows how to provide help for the programs you write. Help text appears in
the Command Window when you use the help function.

Create help text by inserting comments at the beginning of your program. If your
program includes a function, position the help text immediately below the function
definition line (the line with the function keyword).

For example, create a function in a file named addme.m that includes help text:

function c = addme(a,b)

% ADDME Add two values together.

% C = ADDME(A) adds A to itself.

% C = ADDME(A,B) adds A and B together.

%

% See also SUM, PLUS.

switch nargin

 case 2

 c = a + b;

 case 1

 c = a + a;

 otherwise

 c = 0;

end

When you type help addme at the command line, the help text displays in the
Command Window:

addme Add two values together.

 C = addme(A) adds A to itself.

 C = addme(A,B) adds A and B together.

 See also sum, plus.

The first help text line, often called the H1 line, typically includes the program name and
a brief description. The Current Folder browser and the help and lookfor functions use
the H1 line to display information about the program.

Create See also links by including function names at the end of your help text on a line
that begins with % See also. If the function exists on the search path or in the current

19 Function Basics

19-6

folder, the help command displays each of these function names as a hyperlink to its
help. Otherwise, help prints the function names as they appear in the help text.

You can include hyperlinks (in the form of URLs) to Web sites in your help text. Create
hyperlinks by including an HTML <a> anchor element. Within the anchor, use a
matlab: statement to execute a web command. For example:

% For more information, see <a href="matlab:

% web('http://www.mathworks.com')">the MathWorks Web site.

End your help text with a blank line (without a %). The help system ignores any comment
lines that appear after the help text block.

Note: When multiple programs have the same name, the help command determines
which help text to display by applying the rules described in “Function Precedence
Order” on page 19-42. However, if a program has the same name as a MathWorks
function, the Help on Selection option in context menus always displays documentation
for the MathWorks function.

See Also
help | lookfor

Related Examples
• “Add Comments to Programs” on page 17-4
• “Create Help Summary Files — Contents.m” on page 29-12
• “Check Which Programs Have Help” on page 29-9
• “Display Custom Documentation” on page 29-15
• “Use Help Files with MEX Files”

 Run Functions in the Editor

19-7

Run Functions in the Editor

This example shows how to run a function that requires some initial setup, such as input
argument values, while working in the Editor.

1 Create a function in a program file named myfunction.m.

function y = myfunction(x)

y = x.^2 + x;

This function requires input x.
2 View the commands available for running the function by clicking Run on the

Editor tab. The command at the top of the list is the command that the Editor uses
by default when you click the Run icon.

3 Replace the text type code to run with an expression that allows you to run the
function.

y = myfunction(1:10)

You can enter multiple commands on the same line, such as

x = 1:10; y = myfunction(x)

For more complicated, multiline commands, create a separate script file, and then
run the script.

Note: Run commands use the base workspace. Any variables that you define in a run
command can overwrite variables in the base workspace that have the same name.

19 Function Basics

19-8

4 Run the function by clicking Run or a specific run command from the drop-down
list. For myfunction.m, and an input of 1:10, this result appears in the Command
Window:

y =

 2 6 12 20 30 42 56 72 90 110

When you select a run command from the list, it becomes the default for the Run
button.

To edit or delete an existing run command, select the command, right-click, and then
select Edit or Delete.

 Base and Function Workspaces

19-9

Base and Function Workspaces

This topic explains the differences between the base workspace and function workspaces,
including workspaces for local functions, nested functions, and scripts.

The base workspace stores variables that you create at the command line. This includes
any variables that scripts create, assuming that you run the script from the command
line or from the Editor. Variables in the base workspace exist until you clear them or end
your MATLAB session.

Functions do not use the base workspace. Every function has its own function workspace.
Each function workspace is separate from the base workspace and all other workspaces
to protect the integrity of the data. Even local functions in a common file have their
own workspaces. Variables specific to a function workspace are called local variables.
Typically, local variables do not remain in memory from one function call to the next.

When you call a script from a function, the script uses the function workspace.

Like local functions, nested functions have their own workspaces. However, these
workspaces are unique in two significant ways:

• Nested functions can access and modify variables in the workspaces of the functions
that contain them.

• All of the variables in nested functions or the functions that contain them must be
explicitly defined. That is, you cannot call a function or script that assigns values to
variables unless those variables already exist in the function workspace.

Related Examples
• “Share Data Between Workspaces” on page 19-10

More About
• “Nested Functions” on page 19-31

19 Function Basics

19-10

Share Data Between Workspaces

In this section...

“Introduction” on page 19-10
“Best Practice: Passing Arguments” on page 19-10
“Nested Functions” on page 19-11
“Persistent Variables” on page 19-11
“Global Variables” on page 19-12
“Evaluating in Another Workspace” on page 19-13

Introduction

This topic shows how to share variables between workspaces or allow them to persist
between function executions.

In most cases, variables created within a function are local variables known only
within that function. Local variables are not available at the command line or to any
other function. However, there are several ways to share data between functions or
workspaces.

Best Practice: Passing Arguments

The most secure way to extend the scope of a function variable is to use function input
and output arguments, which allow you to pass values of variables.

For example, create two functions, update1 and update2, that share and modify an
input value. update2 can be a local function in the file update1.m, or can be a function
in its own file, update2.m.

function y1 = update1(x1)

 y1 = 1 + update2(x1);

function y2 = update2(x2)

 y2 = 2 * x2;

Call the update1 function from the command line and assign to variable Y in the base
workspace:

X = [1,2,3];

 Share Data Between Workspaces

19-11

Y = update1(X)

Y =

 3 5 7

Nested Functions

A nested function has access to the workspaces of all functions in which it is nested. So,
for example, a nested function can use a variable (in this case, x) that is defined in its
parent function:

function primaryFx

 x = 1;

 nestedFx

 function nestedFx

 x = x + 1;

 end

end

When parent functions do not use a given variable, the variable remains local to the
nested function. For example, in this version of primaryFx, the two nested functions
have their own versions of x that cannot interact with each other.

function primaryFx

 nestedFx1

 nestedFx2

 function nestedFx1

 x = 1;

 end

 function nestedFx2

 x = 2;

 end

end

For more information, see “Nested Functions” on page 19-31.

Persistent Variables

When you declare a variable within a function as persistent, the variable retains its
value from one function call to the next. Other local variables retain their value only

19 Function Basics

19-12

during the current execution of a function. Persistent variables are equivalent to static
variables in other programming languages.

Declare variables using the persistent keyword before you use them. MATLAB
initializes persistent variables to an empty matrix, [].

For example, define a function in a file named findSum.m that initializes a sum to 0,
and then adds to the value on each iteration.

function findSum(inputvalue)

persistent SUM_X

if isempty(SUM_X)

 SUM_X = 0;

end

SUM_X = SUM_X + inputvalue;

When you call the function, the value of SUM_X persists between subsequent executions.

These operations clear the persistent variables for a function:

• clear all

• clear functionname

• Editing the function file

To prevent clearing persistent variables, lock the function file using mlock.

Global Variables

Global variables are variables that you can access from functions or from the command
line. They have their own workspace, which is separate from the base and function
workspaces.

However, global variables carry notable risks. For example:

• Any function can access and update a global variable. Other functions that use the
variable might return unexpected results.

• If you unintentionally give a “new” global variable the same name as an existing
global variable, one function can overwrite the values expected by another. This error
is difficult to diagnose.

Use global variables sparingly, if at all.

 Share Data Between Workspaces

19-13

If you use global variables, declare them using the global keyword before you access
them within any particular location (function or command line). For example, create a
function in a file called falling.m:

function h = falling(t)

 global GRAVITY

 h = 1/2*GRAVITY*t.^2;

Then, enter these commands at the prompt:

global GRAVITY

GRAVITY = 32;

y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the command prompt
available inside the function. However, as a more robust alternative, redefine the
function to accept the value as an input:

function h = falling(t,gravity)

 h = 1/2*gravity*t.^2;

Then, enter these commands at the prompt:

GRAVITY = 32;

y = falling((0:.1:5)',GRAVITY);

Evaluating in Another Workspace

The evalin and assignin functions allow you to evaluate commands or variable names
from strings and specify whether to use the current or base workspace.

Like global variables, these functions carry risks of overwriting existing data. Use them
sparingly.

evalin and assignin are sometimes useful for callback functions in graphical user
interfaces to evaluate against the base workspace. For example, create a list box of
variable names from the base workspace:

function listBox

figure

lb = uicontrol('Style','listbox','Position',[10 10 100 100],...

 'Callback',@update_listBox);

update_listBox(lb)

19 Function Basics

19-14

function update_listBox(src,~)

vars = evalin('base','who');

src.String = vars;

For other programming applications, consider argument passing and the techniques
described in “Alternatives to the eval Function” on page 2-66.

More About
• “Base and Function Workspaces” on page 19-9

 Check Variable Scope in Editor

19-15

Check Variable Scope in Editor

In this section...

“Use Automatic Function and Variable Highlighting” on page 19-15
“Example of Using Automatic Function and Variable Highlighting” on page 19-16

Scoping issues can be the source of some coding problems. For instance, if you are
unaware that nested functions share a particular variable, the results of running your
code might not be as you expect. Similarly, mistakes in usage of local, global, and
persistent variables can cause unexpected results.

The Code Analyzer does not always indicate scoping issues because sharing a variable
across functions is not an error—it may be your intent. Use MATLAB function and
variable highlighting features to identify when and where your code uses functions and
variables. If you have an active Internet connection, you can watch the Variable and
Function Highlighting video for an overview of the major features.

For conceptual information on nested functions and the various types of MATLAB
variables, see “Sharing Variables Between Parent and Nested Functions” on page
19-32 and “Share Data Between Workspaces” on page 19-10.

Use Automatic Function and Variable Highlighting

By default, the Editor indicates functions, local variables, and variables with shared
scope in various shades of blue. Variables with shared scope include: “Global Variables”
on page 19-12, “Persistent Variables” on page 19-11, and variables within nested
functions. (For more information, see “Nested Functions” on page 19-11.)

To enable and disable highlighting or to change the colors, click Preferences and
select MATLAB > Colors > Programming tools.

By default, the Editor:

• Highlights all instances of a given function or local variable in sky blue when you
place the cursor within a function or variable name. For instance:

• Displays a variable with shared scope in teal blue, regardless of the cursor location.
For instance:

http://www.mathworks.com/videos/variable-and-subfunction-highlighting-in-r2010b-101555.html
http://www.mathworks.com/videos/variable-and-subfunction-highlighting-in-r2010b-101555.html

19 Function Basics

19-16

Example of Using Automatic Function and Variable Highlighting

Consider the code for a function rowsum:

function rowTotals = rowsum

% Add the values in each row and

% store them in a new array

x = ones(2,10);

[n, m] = size(x);

rowTotals = zeros(1,n);

for i = 1:n

 rowTotals(i) = addToSum;

end

 function colsum = addToSum

 colsum = 0;

 thisrow = x(i,:);

 for i = 1:m

 colsum = colsum + thisrow(i);

 end

 end

end

When you run this code, instead of returning the sum of the values in each row and
displaying:

ans =

 10 10

MATLAB displays:

ans =

 0 0 0 0 0 0 0 0 0 10

Examine the code by following these steps:

 Check Variable Scope in Editor

19-17

1
On the Home tab in the Environment section, click Preferences and select
MATLAB > Colors > Programming tools. Ensure that Automatically highlight
and Variables with shared scope are selected.

2 Copy the rowsum code into the Editor.

Notice the variable appears in teal blue, which indicates i is not a local variable.
Both the rowTotals function and the addToSum functions set and use the variable
i.

The variable n, at line 6 appears in black, indicating that it does not span multiple
functions.

3 Hover the mouse pointer over an instance of variable i.

A tooltip appears: The scope of variable 'i' spans multiple functions.
4 Click the tooltip link for information about variables whose scope span multiple

functions.
5 Click an instance of i.

Every reference to i highlights in sky blue and markers appear in the indicator bar
on the right side of the Editor.

19 Function Basics

19-18

6 Hover over one of the indicator bar markers.

A tooltip appears and displays the name of the function or variable and the line of
code represented by the marker.

7 Click a marker to navigate to the line indicated in tooltip for that marker.

This is particularly useful when your file contains more code than you can view at
one time in the Editor.

Fix the code by changing the instance of i at line 15 to y.

You can see similar highlighting effects when you click on a function reference. For
instance, click on addToSum.

 Types of Functions

19-19

Types of Functions

In this section...

“Local and Nested Functions in a File” on page 19-19
“Private Functions in a Subfolder” on page 19-20
“Anonymous Functions Without a File” on page 19-20

Local and Nested Functions in a File

Program files can contain multiple functions: the main function and any combination of
local or nested functions. Local and nested functions are useful for dividing programs into
smaller tasks, making it easier to read and maintain your code.

Local functions are subroutines that are available to any other functions within the same
file. They can appear in the file in any order after the main function in the file. Local
functions are the most common way to break up programmatic tasks.

For example, create a single program file named myfunction.m that contains a main
function, myfunction, and two local functions, squareMe and doubleMe:

function b = myfunction(a)

 b = squareMe(a) + doubleMe(a);

end

function y = squareMe(x)

 y = x.^2;

end

function y = doubleMe(x)

 y = x.*2;

end

You can call the main function from the command line or another program file, although
the local functions are only available to myfunction:

myfunction(pi)

ans =

 16.1528

Nested functions are completely contained within another function. The primary
difference between nested functions and local functions is that nested functions can

19 Function Basics

19-20

use variables defined in parent functions without explicitly passing those variables as
arguments.

Nested functions are useful when subroutines share data, such as applications that pass
data between components. For example, create a function that allows you to set a value
between 0 and 1 using either a slider or an editable text box. If you use nested functions
for the callbacks, the slider and text box can share the value and each other’s handles
without explicitly passing them:

function myslider

value = 0;

f = figure;

s = uicontrol(f,'Style','slider','Callback',@slider);

e = uicontrol(f,'Style','edit','Callback',@edittext,...

 'Position',[100,20,100,20]);

 function slider(obj,~)

 value = obj.Value;

 e.String = num2str(value);

 end

 function edittext(obj,~)

 value = str2double(obj.String);

 s.Value = value;

 end

end

Private Functions in a Subfolder

Like local or nested functions, private functions are accessible only to functions in a
specific location. However, private functions are not in the same file as the functions
that can call them. Instead, they are in a subfolder named private. Private functions
are available only to functions in the folder immediately above the private folder. Use
private functions to separate code into different files, or to share code between multiple,
related functions.

Anonymous Functions Without a File

Anonymous functions allow you to define a function without creating a program file, as
long as the function consists of a single statement. A common application of anonymous
functions is to define a mathematical expression, and then evaluate that expression over

 Types of Functions

19-21

a range of values using a MATLAB® function function, i.e., a function that accepts a
function handle as an input.

For example, this statement creates a function handle named s for an anonymous
function:

s = @(x) sin(1./x);

This function has a single input, x . The @ operator creates the function handle.

You can use the function handle to evaluate the function for particular values, such as

y = s(pi)

y =

 0.3130

Or, you can pass the function handle to a function that evaluates over a range of values,
such as fplot:

range = [0.01,0.1];

fplot(s,range)

19 Function Basics

19-22

More About
• “Local Functions” on page 19-29
• “Nested Functions” on page 19-31
• “Private Functions” on page 19-40
• “Anonymous Functions” on page 19-23

 Anonymous Functions

19-23

Anonymous Functions

In this section...

“What Are Anonymous Functions?” on page 19-23
“Variables in the Expression” on page 19-24
“Multiple Anonymous Functions” on page 19-25
“Functions with No Inputs” on page 19-26
“Functions with Multiple Inputs or Outputs” on page 19-26
“Arrays of Anonymous Functions” on page 19-27

What Are Anonymous Functions?

An anonymous function is a function that is not stored in a program file, but is associated
with a variable whose data type is function_handle. Anonymous functions can accept
inputs and return outputs, just as standard functions do. However, they can contain only
a single executable statement.

For example, create a handle to an anonymous function that finds the square of a
number:

sqr = @(x) x.^2;

Variable sqr is a function handle. The @ operator creates the handle, and the
parentheses () immediately after the @ operator include the function input arguments.
This anonymous function accepts a single input x, and implicitly returns a single output,
an array the same size as x that contains the squared values.

Find the square of a particular value (5) by passing the value to the function handle, just
as you would pass an input argument to a standard function.

a = sqr(5)

a =

 25

Many MATLAB functions accept function handles as inputs so that you can evaluate
functions over a range of values. You can create handles either for anonymous functions
or for functions in program files. The benefit of using anonymous functions is that you do
not have to edit and maintain a file for a function that requires only a brief definition.

19 Function Basics

19-24

For example, find the integral of the sqr function from 0 to 1 by passing the function
handle to the integral function:

q = integral(sqr,0,1);

You do not need to create a variable in the workspace to store an anonymous function.
Instead, you can create a temporary function handle within an expression, such as this
call to the integral function:

q = integral(@(x) x.^2,0,1);

Variables in the Expression

Function handles can store not only an expression, but also variables that the expression
requires for evaluation.

For example, create a function handle to an anonymous function that requires
coefficients a, b, and c.

a = 1.3;

b = .2;

c = 30;

parabola = @(x) a*x.^2 + b*x + c;

Because a, b, and c are available at the time you create parabola, the function handle
includes those values. The values persist within the function handle even if you clear the
variables:

clear a b c

x = 1;

y = parabola(x)

y =

 31.5000

To supply different values for the coefficients, you must create a new function handle:

a = -3.9;

b = 52;

c = 0;

parabola = @(x) a*x.^2 + b*x + c;

x = 1;

y = parabola(1)

y =

 Anonymous Functions

19-25

 48.1000

You can save function handles and their associated values in a MAT-file and load them in
a subsequent MATLAB session using the save and load functions, such as

save myfile.mat parabola

Use only explicit variables when constructing anonymous functions. If an anonymous
function accesses any variable or nested function that is not explicitly referenced in the
argument list or body, MATLAB throws an error when you invoke the function. Implicit
variables and function calls are often encountered in the functions such as eval, evalin,
assignin, and load. Avoid using these functions in the body of anonymous functions.

Multiple Anonymous Functions

The expression in an anonymous function can include another anonymous function. This
is useful for passing different parameters to a function that you are evaluating over a
range of values. For example, you can solve the equation

for varying values of c by combining two anonymous functions:

g = @(c) (integral(@(x) (x.^2 + c*x + 1),0,1));

Here is how to derive this statement:

1 Write the integrand as an anonymous function,

@(x) (x.^2 + c*x + 1)

2 Evaluate the function from zero to one by passing the function handle to integral,

integral(@(x) (x.^2 + c*x + 1),0,1)

3 Supply the value for c by constructing an anonymous function for the entire
equation,

g = @(c) (integral(@(x) (x.^2 + c*x + 1),0,1));

The final function allows you to solve the equation for any value of c. For example:

g(2)

ans =

19 Function Basics

19-26

 2.3333

Functions with No Inputs

If your function does not require any inputs, use empty parentheses when you define and
call the anonymous function. For example:

t = @() datestr(now);

d = t()

d =

26-Jan-2012 15:11:47

Omitting the parentheses in the assignment statement creates another function handle,
and does not execute the function:

d = t

d =

 @() datestr(now)

Functions with Multiple Inputs or Outputs

Anonymous functions require that you explicitly specify the input arguments as you
would for a standard function, separating multiple inputs with commas. For example,
this function accepts two inputs, x and y:

myfunction = @(x,y) (x^2 + y^2 + x*y);

x = 1;

y = 10;

z = myfunction(x,y)

z =

 111

However, you do not explicitly define output arguments when you create an anonymous
function. If the expression in the function returns multiple outputs, then you can request
them when you call the function. Enclose multiple output variables in square brackets.

For example, the ndgrid function can return as many outputs as the number of input
vectors. This anonymous function that calls ndgrid can also return multiple outputs:

 Anonymous Functions

19-27

c = 10;

mygrid = @(x,y) ndgrid((-x:x/c:x),(-y:y/c:y));

[x,y] = mygrid(pi,2*pi);

You can use the output from mygrid to create a mesh or surface plot:

z = sin(x) + cos(y);

mesh(x,y,z)

Arrays of Anonymous Functions

Although most MATLAB fundamental data types support multidimensional arrays,
function handles must be scalars (single elements). However, you can store multiple

19 Function Basics

19-28

function handles using a cell array or structure array. The most common approach is to
use a cell array, such as

f = {@(x)x.^2;

 @(y)y+10;

 @(x,y)x.^2+y+10};

When you create the cell array, keep in mind that MATLAB interprets spaces as column
separators. Either omit spaces from expressions, as shown in the previous code, or
enclose expressions in parentheses, such as

f = {@(x) (x.^2);

 @(y) (y + 10);

 @(x,y) (x.^2 + y + 10)};

Access the contents of a cell using curly braces. For example, f{1} returns the first
function handle. To execute the function, pass input values in parentheses after the curly
braces:

x = 1;

y = 10;

f{1}(x)

f{2}(y)

f{3}(x,y)

ans =

 1

ans =

 20

ans =

 21

More About
• “Create Function Handle” on page 12-2

 Local Functions

19-29

Local Functions

This topic explains the term local function, and shows how to create and use local
functions.

MATLAB program files can contain code for more than one function. The first function
in the file (the main function) is visible to functions in other files, or you can call it from
the command line. Additional functions within the file are called local functions. Local
functions are only visible to other functions in the same file. They are equivalent to
subroutines in other programming languages, and are sometimes called subfunctions.

Local functions can occur in any order, as long as the main function appears first. Each
function begins with its own function definition line.

For example, create a program file named mystats.m that contains a main function,
mystats, and two local functions, mymean and mymedian.

function [avg, med] = mystats(x)

n = length(x);

avg = mymean(x,n);

med = mymedian(x,n);

end

function a = mymean(v,n)

% MYMEAN Example of a local function.

a = sum(v)/n;

end

function m = mymedian(v,n)

% MYMEDIAN Another example of a local function.

w = sort(v);

if rem(n,2) == 1

 m = w((n + 1)/2);

else

 m = (w(n/2) + w(n/2 + 1))/2;

end

end

The local functions mymean and mymedian calculate the average and median of the input
list. The main function mystats determines the length of the list n and passes it to the
local functions.

19 Function Basics

19-30

Although you cannot call a local function from the command line or from functions in
other files, you can access its help using the help function. Specify names of both the
main function and the local function, separating them with a > character:

help mystats>mymean

 mymean Example of a local function.

Local functions in the current file have precedence over functions in other files. That is,
when you call a function within a program file, MATLAB checks whether the function
is a local function before looking for other main functions. This allows you to create an
alternate version of a particular function while retaining the original in another file.

All functions, including local functions, have their own workspaces that are separate
from the base workspace. Local functions cannot access variables used by other functions
unless you pass them as arguments. In contrast, nested functions (functions completely
contained within another function) can access variables used by the functions that
contain them.

See Also
localfunctions

More About
• “Nested Functions” on page 19-31
• “Function Precedence Order” on page 19-42

 Nested Functions

19-31

Nested Functions

In this section...

“What Are Nested Functions?” on page 19-31
“Requirements for Nested Functions” on page 19-31
“Sharing Variables Between Parent and Nested Functions” on page 19-32
“Using Handles to Store Function Parameters” on page 19-33
“Visibility of Nested Functions” on page 19-36

What Are Nested Functions?

A nested function is a function that is completely contained within a parent function. Any
function in a program file can include a nested function.

For example, this function named parent contains a nested function named nestedfx:

function parent

disp('This is the parent function')

nestedfx

 function nestedfx

 disp('This is the nested function')

 end

end

The primary difference between nested functions and other types of functions is that they
can access and modify variables that are defined in their parent functions. As a result:

• Nested functions can use variables that are not explicitly passed as input arguments.
• In a parent function, you can create a handle to a nested function that contains the

data necessary to run the nested function.

Requirements for Nested Functions

• Typically, functions do not require an end statement. However, to nest any function
in a program file, all functions in that file must use an end statement.

19 Function Basics

19-32

• You cannot define a nested function inside any of the MATLAB program control
statements, such as if/elseif/else, switch/case, for, while, or try/catch.

• You must call a nested function either directly by name (without using feval), or
using a function handle that you created using the @ operator (and not str2func).

• All of the variables in nested functions or the functions that contain them must be
explicitly defined. That is, you cannot call a function or script that assigns values to
variables unless those variables already exist in the function workspace. (For more
information, see “Variables in Nested and Anonymous Functions” on page 19-38.)

Sharing Variables Between Parent and Nested Functions

In general, variables in one function workspace are not available to other functions.
However, nested functions can access and modify variables in the workspaces of the
functions that contain them.

This means that both a nested function and a function that contains it can modify the
same variable without passing that variable as an argument. For example, in each of
these functions, main1 and main2, both the main function and the nested function can
access variable x:

function main1

x = 5;

nestfun1

 function nestfun1

 x = x + 1;

 end

end

function main2

nestfun2

 function nestfun2

 x = 5;

 end

x = x + 1;

end

When parent functions do not use a given variable, the variable remains local to the
nested function. For example, in this function named main, the two nested functions
have their own versions of x that cannot interact with each other:

function main

 nestedfun1

 nestedfun2

 function nestedfun1

 Nested Functions

19-33

 x = 1;

 end

 function nestedfun2

 x = 2;

 end

end

Functions that return output arguments have variables for the outputs in their
workspace. However, parent functions only have variables for the output of nested
functions if they explicitly request them. For example, this function parentfun does not
have variable y in its workspace:

function parentfun

x = 5;

nestfun;

 function y = nestfun

 y = x + 1;

 end

end

If you modify the code as follows, variable z is in the workspace of parentfun:

function parentfun

x = 5;

z = nestfun;

 function y = nestfun

 y = x + 1;

 end

end

Using Handles to Store Function Parameters

Nested functions can use variables from three sources:

• Input arguments
• Variables defined within the nested function
• Variables defined in a parent function, also called externally scoped variables

19 Function Basics

19-34

When you create a function handle for a nested function, that handle stores not only the
name of the function, but also the values of externally scoped variables.

For example, create a function in a file named makeParabola.m. This function accepts
several polynomial coefficients, and returns a handle to a nested function that calculates
the value of that polynomial.

function p = makeParabola(a,b,c)

p = @parabola;

 function y = parabola(x)

 y = a*x.^2 + b*x + c;

 end

end

The makeParabola function returns a handle to the parabola function that includes
values for coefficients a, b, and c.

At the command line, call the makeParabola function with coefficient values of 1.3, .2,
and 30. Use the returned function handle p to evaluate the polynomial at a particular
point:

p = makeParabola(1.3,.2,30);

X = 25;

Y = p(X)

Y =

 847.5000

Many MATLAB functions accept function handle inputs to evaluate functions over a
range of values. For example, plot the parabolic equation from -25 to +25:

fplot(p,[-25,25])

 Nested Functions

19-35

You can create multiple handles to the parabola function that each use different
polynomial coefficients:

firstp = makeParabola(0.8,1.6,32);

secondp = makeParabola(3,4,50);

range = [-25,25];

figure

hold on

fplot(firstp,range)

fplot(secondp,range,'r:')

hold off

19 Function Basics

19-36

Visibility of Nested Functions

Every function has a certain scope, that is, a set of other functions to which it is visible. A
nested function is available:

• From the level immediately above it. (In the following code, function A can call B or D,
but not C or E.)

• From a function nested at the same level within the same parent function. (Function
B can call D, and D can call B.)

• From a function at any lower level. (Function C can call B or D, but not E.)

function A(x, y) % Main function

 Nested Functions

19-37

B(x,y)

D(y)

 function B(x,y) % Nested in A

 C(x)

 D(y)

 function C(x) % Nested in B

 D(x)

 end

 end

 function D(x) % Nested in A

 E(x)

 function E(x) % Nested in D

 disp(x)

 end

 end

end

The easiest way to extend the scope of a nested function is to create a function handle
and return it as an output argument, as shown in “Using Handles to Store Function
Parameters” on page 19-33. Only functions that can call a nested function can create
a handle to it.

More About
• “Variables in Nested and Anonymous Functions” on page 19-38
• “Create Function Handle” on page 12-2
• “Argument Checking in Nested Functions” on page 20-11

19 Function Basics

19-38

Variables in Nested and Anonymous Functions

The scoping rules for nested and anonymous functions require that all variables used
within the function be present in the text of the code.

If you attempt to dynamically add a variable to the workspace of an anonymous function,
a nested function, or a function that contains a nested function, then MATLAB issues an
error of the form

Attempt to add variable to a static workspace.

This table describes typical operations that attempt dynamic assignment, and the
recommended ways to avoid it.

Type of Operation Best Practice to Avoid Dynamic Assignment

load Specify the variable name as an input to the
load function. Or, assign the output from the
load function to a structure array.

eval, evalin, or assignin If possible, avoid using these functions
altogether. See “Alternatives to the eval
Function” on page 2-66.

Calling a MATLAB script that creates
a variable

Convert the script to a function and pass the
variable using arguments. This approach also
clarifies the code.

Assigning to a variable in the
MATLAB debugger

Create a global variable for temporary use in
debugging, such as

K>> global X;

K>> X = myvalue;

Another way to avoid dynamic assignment is to explicitly declare the variable within
the function. For example, suppose a script named makeX.m assigns a value to variable
X. A function that calls makeX and explicitly declares X avoids the dynamic assignment
error because X is in the function workspace. A common way to declare a variable is to
initialize its value to an empty array:

function noerror

X = [];

nestedfx

 Variables in Nested and Anonymous Functions

19-39

 function nestedfx

 makeX

 end

end

More About
• “Base and Function Workspaces” on page 19-9

19 Function Basics

19-40

Private Functions

This topic explains the term private function, and shows how to create and use private
functions.

Private functions are useful when you want to limit the scope of a function. You
designate a function as private by storing it in a subfolder with the name private.
Then, the function is available only to functions in the folder immediately above the
private subfolder, or to scripts called by the functions that reside in the parent folder.

For example, within a folder that is on the MATLAB search path, create a subfolder
named private. Do not add private to the path. Within the private folder, create a
function in a file named findme.m:

function findme

% FINDME An example of a private function.

disp('You found the private function.')

Change to the folder that contains the private folder and create a file named
visible.m.

function visible

findme

Change your current folder to any location and call the visible function.

visible

You found the private function.

Although you cannot call the private function from the command line or from functions
outside the parent of the private folder, you can access its help:

help private/findme

 findme An example of a private function.

Private functions have precedence over standard functions, so MATLAB finds a private
function named test.m before a nonprivate program file named test.m. This allows
you to create an alternate version of a particular function while retaining the original in
another folder.

 Private Functions

19-41

More About
• “Function Precedence Order” on page 19-42

19 Function Basics

19-42

Function Precedence Order

This topic explains how MATLAB determines which function to call when multiple
functions in the current scope have the same name. The current scope includes the
current file, an optional private subfolder relative to the currently running function, the
current folder, and the MATLAB path.

MATLAB uses this precedence order:

1 Variables

Before assuming that a name matches a function, MATLAB checks for a variable
with that name in the current workspace.

Note: If you create a variable with the same name as a function, MATLAB cannot
run that function until you clear the variable from memory.

2 Imported package functions

A package function is associated with a particular folder. When you import a
package function using the import function, it has precedence over all other
functions with the same name.

3 Nested functions within the current function
4 Local functions within the current file
5 Private functions

Private functions are functions in a subfolder named private that is immediately
below the folder of the currently running file.

6 Object functions

An object function accepts a particular class of object in its input argument list.
When there are multiple object functions with the same name, MATLAB checks the
classes of the input arguments to determine which function to use.

7 Class constructors in @ folders

MATLAB uses class constructors to create a variety of objects (such as timeseries
or audioplayer), and you can define your own classes using object-oriented
programming. For example, if you create a class folder @polynom and a constructor

 Function Precedence Order

19-43

function @polynom/polynom.m, the constructor takes precedence over other
functions named polynom.m anywhere on the path.

8 Loaded Simulink® models
9 Functions in the current folder
10 Functions elsewhere on the path, in order of appearance

When determining the precedence of functions within the same folder, MATLAB
considers the file type, in this order:

1 Built-in function
2 MEX-function
3 Simulink model files that are not loaded, with file types in this order:

a SLX file
b MDL file

4 App file (.mlapp) created using MATLAB App Designer
5 Program file with a .mlx extension
6 P-file (that is, an encoded program file with a .p extension)
7 Program file with a .m extension

For example, if MATLAB finds a .m file and a P-file with the same name in the same
folder, it uses the P-file. Because P-files are not automatically regenerated, make sure
that you regenerate the P-file whenever you edit the program file.

To determine the function MATLAB calls for a particular input, include the function
name and the input in a call to the which function. For example, determine the location
of the max function that MATLAB calls for double and int8 values:

testval = 10;

which max(testval)

% double method

built-in (matlabroot\toolbox\matlab\datafun\@double\max)

testval = int8(10);

which max(testval)

% int8 method

built-in (matlabroot\toolbox\matlab\datafun\@int8\max)

19 Function Basics

19-44

For more information, see:

• “Search Path Basics”
• “Variable Names” on page 1-8
• “Types of Functions” on page 19-19
• “Class Precedence and MATLAB Path”

20

Function Arguments

• “Find Number of Function Arguments” on page 20-2
• “Support Variable Number of Inputs” on page 20-4
• “Support Variable Number of Outputs” on page 20-6
• “Validate Number of Function Arguments” on page 20-8
• “Argument Checking in Nested Functions” on page 20-11
• “Ignore Function Inputs” on page 20-13
• “Check Function Inputs with validateattributes” on page 20-14
• “Parse Function Inputs” on page 20-17
• “Input Parser Validation Functions” on page 20-21

20 Function Arguments

20-2

Find Number of Function Arguments

This example shows how to determine how many input or output arguments your
function receives using nargin and nargout.

Input Arguments

Create a function in a file named addme.m that accepts up to two inputs. Identify the
number of inputs with nargin.

function c = addme(a,b)

switch nargin

 case 2

 c = a + b;

 case 1

 c = a + a;

 otherwise

 c = 0;

end

Call addme with one, two, or zero input arguments.

addme(42)

ans =

 84

addme(2,4000)

ans =

 4002

addme

ans =

 0

Output Arguments

Create a new function in a file named addme2.m that can return one or two outputs (a
result and its absolute value). Identify the number of requested outputs with nargout.

function [result,absResult] = addme2(a,b)

 Find Number of Function Arguments

20-3

switch nargin

 case 2

 result = a + b;

 case 1

 result = a + a;

 otherwise

 result = 0;

end

if nargout > 1

 absResult = abs(result);

end

Call addme2 with one or two output arguments.

value = addme2(11,-22)

value =

 -11

[value,absValue] = addme2(11,-22)

value =

 -11

absValue =

 11

Functions return outputs in the order they are declared in the function definition.

See Also
nargin | narginchk | nargout | nargoutchk

20 Function Arguments

20-4

Support Variable Number of Inputs

This example shows how to define a function that accepts a variable number of input
arguments using varargin. The varargin argument is a cell array that contains the
function inputs, where each input is in its own cell.

Create a function in a file named plotWithTitle.m that accepts a variable number of
paired (x,y) inputs for the plot function and an optional title. If the function receives an
odd number of inputs, it assumes that the last input is a title.

function plotWithTitle(varargin)

if rem(nargin,2) ~= 0

 myTitle = varargin{nargin};

 numPlotInputs = nargin - 1;

else

 myTitle = 'Default Title';

 numPlotInputs = nargin;

end

plot(varargin{1:numPlotInputs})

title(myTitle)

Because varargin is a cell array, you access the contents of each cell using curly braces,
{}. The syntax varargin{1:numPlotInputs} creates a comma-separated list of inputs
to the plot function.

Call plotWithTitle with two sets of (x,y) inputs and a title.

x = [1:.1:10];

y1 = sin(x);

y2 = cos(x);

plotWithTitle(x,y1,x,y2,'Sine and Cosine')

You can use varargin alone in an input argument list, or at the end of the list of inputs,
such as

function myfunction(a,b,varargin)

In this case, varargin{1} corresponds to the third input passed to the function, and
nargin returns length(varargin) + 2.

See Also
nargin | varargin

 Support Variable Number of Inputs

20-5

Related Examples
• “Access Data in a Cell Array” on page 11-5

More About
• “Argument Checking in Nested Functions” on page 20-11
• “Comma-Separated Lists” on page 2-57

20 Function Arguments

20-6

Support Variable Number of Outputs

This example shows how to define a function that returns a variable number of output
arguments using varargout. Output varargout is a cell array that contains the
function outputs, where each output is in its own cell.

Create a function in a file named magicfill.m that assigns a magic square to each
requested output.

function varargout = magicfill

 nOutputs = nargout;

 varargout = cell(1,nOutputs);

 for k = 1:nOutputs;

 varargout{k} = magic(k);

 end

Indexing with curly braces {} updates the contents of a cell.

Call magicfill and request three outputs.

[first,second,third] = magicfill

first =

 1

second =

 1 3

 4 2

third =

 8 1 6

 3 5 7

 4 9 2

MATLAB assigns values to the outputs according to their order in the varargout array.
For example, first == varargout{1}.

You can use varargout alone in an output argument list, or at the end of the list of
outputs, such as

function [x,y,varargout] = myfunction(a,b)

 Support Variable Number of Outputs

20-7

In this case, varargout{1} corresponds to the third output that the function returns,
and nargout returns length(varargout) + 2.

See Also
nargout | varargout

Related Examples
• “Access Data in a Cell Array” on page 11-5

More About
• “Argument Checking in Nested Functions” on page 20-11

20 Function Arguments

20-8

Validate Number of Function Arguments

This example shows how to check whether your custom function receives a valid number
of input or output arguments. MATLAB performs some argument checks automatically.
For other cases, you can use narginchk or nargoutchk.

Automatic Argument Checks

MATLAB checks whether your function receives more arguments than expected when
it can determine the number from the function definition. For example, this function
accepts up to two outputs and three inputs:

function [x,y] = myFunction(a,b,c)

If you pass too many inputs to myFunction, MATLAB issues an error. You do not need
to call narginchk to check for this case.

[X,Y] = myFunction(1,2,3,4)

Error using myFunction

Too many input arguments.

Use the narginchk and nargoutchk functions to verify that your function receives:

• A minimum number of required arguments.
• No more than a maximum number of arguments, when your function uses varargin

or varargout.

Input Checks with narginchk

Define a function in a file named testValues.m that requires at least two inputs. The
first input is a threshold value to compare against the other inputs.

function testValues(threshold,varargin)

minInputs = 2;

maxInputs = Inf;

narginchk(minInputs,maxInputs)

for k = 1:(nargin-1)

 if (varargin{k} > threshold)

 fprintf('Test value %d exceeds %d\n',k,threshold);

 end

end

 Validate Number of Function Arguments

20-9

Call testValues with too few inputs.

testValues(10)

Error using testValues (line 4)

Not enough input arguments.

Call testValues with enough inputs.

testValues(10,1,11,111)

Test value 2 exceeds 10

Test value 3 exceeds 10

Output Checks with nargoutchk

Define a function in a file named mysize.m that returns the dimensions of the input
array in a vector (from the size function), and optionally returns scalar values
corresponding to the sizes of each dimension. Use nargoutchk to verify that the number
of requested individual sizes does not exceed the number of available dimensions.

function [sizeVector,varargout] = mysize(x)

minOutputs = 0;

maxOutputs = ndims(x) + 1;

nargoutchk(minOutputs,maxOutputs)

sizeVector = size(x);

varargout = cell(1,nargout-1);

for k = 1:length(varargout)

 varargout{k} = sizeVector(k);

end

Call mysize with a valid number of outputs.

A = rand(3,4,2);

[fullsize,nrows,ncols,npages] = mysize(A)

fullsize =

 3 4 2

nrows =

 3

ncols =

20 Function Arguments

20-10

 4

npages =

 2

Call mysize with too many outputs.

A = 1;

[fullsize,nrows,ncols,npages] = mysize(A)

Error using mysize (line 4)

Too many output arguments.

See Also
narginchk | nargoutchk

Related Examples
• “Support Variable Number of Inputs” on page 20-4
• “Support Variable Number of Outputs” on page 20-6

 Argument Checking in Nested Functions

20-11

Argument Checking in Nested Functions

This topic explains special considerations for using varargin, varargout, nargin, and
nargout with nested functions.

varargin and varargout allow you to create functions that accept variable numbers
of input or output arguments. Although varargin and varargout look like function
names, they refer to variables, not functions. This is significant because nested functions
share the workspaces of the functions that contain them.

If you do not use varargin or varargout in the declaration of a nested function, then
varargin or varargout within the nested function refers to the arguments of an outer
function.

For example, create a function in a file named showArgs.m that uses varargin and has
two nested functions, one that uses varargin and one that does not.

function showArgs(varargin)

nested1(3,4)

nested2(5,6,7)

 function nested1(a,b)

 disp('nested1: Contents of varargin{1}')

 disp(varargin{1})

 end

 function nested2(varargin)

 disp('nested2: Contents of varargin{1}')

 disp(varargin{1})

 end

end

Call the function and compare the contents of varargin{1} in the two nested functions.

showArgs(0,1,2)

nested1: Contents of varargin{1}

 0

nested2: Contents of varargin{1}

 5

20 Function Arguments

20-12

On the other hand, nargin and nargout are functions. Within any function, including
nested functions, calls to nargin or nargout return the number of arguments for that
function. If a nested function requires the value of nargin or nargout from an outer
function, pass the value to the nested function.

For example, create a function in a file named showNumArgs.m that passes the number
of input arguments from the primary (parent) function to a nested function.

function showNumArgs(varargin)

disp(['Number of inputs to showNumArgs: ',int2str(nargin)]);

nestedFx(nargin,2,3,4)

 function nestedFx(n,varargin)

 disp(['Number of inputs to nestedFx: ',int2str(nargin)]);

 disp(['Number of inputs to its parent: ',int2str(n)]);

 end

end

Call showNumArgs and compare the output of nargin in the parent and nested
functions.

showNumArgs(0,1)

Number of inputs to showNumArgs: 2

Number of inputs to nestedFx: 4

Number of inputs to its parent: 2

See Also
nargin | nargout | varargin | varargout

 Ignore Function Inputs

20-13

Ignore Function Inputs

This example shows how to ignore inputs in your function definition using the tilde (~)
operator.

Use this operator when your function must accept a predefined set of inputs, but your
function does not use all of the inputs. Common applications include defining callback
functions, as shown here, or deriving a class from a superclass.

Define a callback for a push button in a file named colorButton.m that does not use the
eventdata input. Ignore the input with a tilde.
function colorButton

figure;

uicontrol('Style','pushbutton','String','Click me','Callback',@btnCallback)

function btnCallback(h,~)

set(h,'BackgroundColor',rand(3,1))

The function declaration for btnCallback is essentially the same as

function btnCallback(h,eventdata)

However, using the tilde prevents the addition of eventdata to the function workspace
and makes it clearer that the function does not use eventdata.

You can ignore any number of function inputs, in any position in the argument list.
Separate consecutive tildes with a comma, such as

myfunction(myinput,~,~)

20 Function Arguments

20-14

Check Function Inputs with validateattributes

This example shows how to verify that the inputs to your function conform to a set of
requirements using the validateattributes function.

validateattributes requires that you pass the variable to check and the supported
data types for that variable. Optionally, pass a set of attributes that describe the valid
dimensions or values.

Check Data Type and Other Attributes

Define a function in a file named checkme.m that accepts up to three inputs: a, b, and c.
Check whether:

• a is a two-dimensional array of positive double-precision values.
• b contains 100 numeric values in an array with 10 columns.
• c is a nonempty character string or cell array.

function checkme(a,b,c)

validateattributes(a,{'double'},{'positive','2d'})

validateattributes(b,{'numeric'},{'numel',100,'ncols',10})

validateattributes(c,{'char','cell'},{'nonempty'})

disp('All inputs are ok.')

The curly braces {} indicate that the set of data types and the set of additional attributes
are in cell arrays. Cell arrays allow you to store combinations of text and numeric data,
or text strings of different lengths, in a single variable.

Call checkme with valid inputs.

checkme(pi,rand(5,10,2),'text')

All inputs are ok.

The scalar value pi is two-dimensional because size(pi) = [1,1].

Call checkme with invalid inputs. The validateattributes function issues an error
for the first input that fails validation, and checkme stops processing.

checkme(-4)

 Check Function Inputs with validateattributes

20-15

Error using checkme (line 3)

Expected input to be positive.

checkme(pi,rand(3,4,2))

Error using checkme (line 4)

Expected input to be an array with number of elements equal to 100.

checkme(pi,rand(5,10,2),struct)

Error using checkme (line 5)

Expected input to be one of these types:

 char, cell

Instead its type was struct.

The default error messages use the generic term input to refer to the argument that
failed validation. When you use the default error message, the only way to determine
which input failed is to view the specified line of code in checkme.

Add Input Name and Position to Errors

Define a function in a file named checkdetails.m that performs the same validation as
checkme, but adds details about the input name and position to the error messages.

function checkdetails(a,b,c)

validateattributes(a,{'double'},{'positive','2d'},'','First',1)

validateattributes(b,{'numeric'},{'numel',100,'ncols',10},'','Second',2)

validateattributes(c,{'char'},{'nonempty'},'','Third',3)

disp('All inputs are ok.')

The empty string '' for the fourth input to validateattributes is a placeholder for
an optional function name string. You do not need to specify a function name because
it already appears in the error message. Specify the function name when you want to
include it in the error identifier for additional error handling.

Call checkdetails with invalid inputs.

checkdetails(-4)

Error using checkdetails (line 3)

Expected input number 1, First, to be positive.

20 Function Arguments

20-16

checkdetails(pi,rand(3,4,2))

Error using checkdetails (line 4)

Expected input number 2, Second, to be an array with

number of elements equal to 100.

See Also
validateattributes | validatestring

 Parse Function Inputs

20-17

Parse Function Inputs

This example shows how to define required and optional inputs, assign defaults to
optional inputs, and validate all inputs to a custom function using the Input Parser.

The Input Parser provides a consistent way to validate and assign defaults to inputs,
improving the robustness and maintainability of your code. To validate the inputs, you
can take advantage of existing MATLAB functions or write your own validation routines.

Step 1. Define your function.

Create a function in a file named printPhoto.m. The printPhoto function has one
required input for the file name, and optional inputs for the finish (glossy or matte), color
space (RGB or CMYK), width, and height.

function printPhoto(filename,varargin)

In your function declaration statement, specify required inputs first. Use varargin to
support optional inputs.

Step 2. Create an InputParser object.

Within your function, call inputParser to create a parser object.

p = inputParser;

Step 3. Add inputs to the scheme.

Add inputs to the parsing scheme in your function using addRequired, addOptional,
or addParameter. For optional inputs, specify default values.

For each input, you can specify a handle to a validation function that checks the input
and returns a scalar logical (true or false) or errors. The validation function can be an
existing MATLAB function (such as ischar or isnumeric) or a function that you create
(such as an anonymous function or a local function).

In the printPhoto function, filename is a required input. Define finish and color
as optional input strings, and width and height as optional parameter value pairs.

defaultFinish = 'glossy';

validFinishes = {'glossy','matte'};

checkFinish = @(x) any(validatestring(x,validFinishes));

20 Function Arguments

20-18

defaultColor = 'RGB';

validColors = {'RGB','CMYK'};

checkColor = @(x) any(validatestring(x,validColors));

defaultWidth = 6;

defaultHeight = 4;

addRequired(p,'filename',@ischar);

addOptional(p,'finish',defaultFinish,checkFinish)

addOptional(p,'color',defaultColor,checkColor)

addParameter(p,'width',defaultWidth,@isnumeric)

addParameter(p,'height',defaultHeight,@isnumeric)

Inputs that you add with addRequired or addOptional are positional arguments.
When you call a function with positional inputs, specify those values in the order they are
added to the parsing scheme.

Inputs added with addParameter are not positional, so you can pass values for height
before or after values for width. However, parameter value inputs require that you pass
the input name ('height' or 'width') along with the value of the input.

If your function accepts optional input strings and parameter name and value pairs,
specify validation functions for the optional input strings. Otherwise, the Input Parser
interprets the optional strings as parameter names. For example, the checkFinish
validation function ensures that printPhoto interprets 'glossy' as a value for
finish and not as an invalid parameter name.

Step 4. Set properties to adjust parsing (optional).

By default, the Input Parser makes assumptions about case sensitivity, function names,
structure array inputs, and whether to allow additional parameter names and values
that are not in the scheme. Properties allow you to explicitly define the behavior. Set
properties using dot notation, similar to assigning values to a structure array.

Allow printPhoto to accept additional parameter value inputs that do not match the
input scheme by setting the KeepUnmatched property of the Input Parser.

p.KeepUnmatched = true;

If KeepUnmatched is false (default), the Input Parser issues an error when inputs do
not match the scheme.

 Parse Function Inputs

20-19

Step 5. Parse the inputs.

Within your function, call the parse method. Pass the values of all of the function
inputs.

parse(p,filename,varargin{:})

Step 6. Use the inputs in your function.

Access parsed inputs using these properties of the inputParser object:

• Results — Structure array with names and values of all inputs in the scheme.
• Unmatched — Structure array with parameter names and values that are passed to

the function, but are not in the scheme (when KeepUnmatched is true).
• UsingDefaults — Cell array with names of optional inputs that are assigned their

default values because they are not passed to the function.

Within the printPhoto function, display the values for some of the inputs:

disp(['File name: ',p.Results.filename])

disp(['Finish: ', p.Results.finish])

if ~isempty(fieldnames(p.Unmatched))

 disp('Extra inputs:')

 disp(p.Unmatched)

end

if ~isempty(p.UsingDefaults)

 disp('Using defaults: ')

 disp(p.UsingDefaults)

end

Step 7. Call your function.

The Input Parser expects to receive inputs as follows:

• Required inputs first, in the order they are added to the parsing scheme with
addRequired.

• Optional positional inputs in the order they are added to the scheme with
addOptional.

• Positional inputs before parameter name and value pair inputs.
• Parameter names and values in the form Name1,Value1,...,NameN,ValueN.

20 Function Arguments

20-20

Pass several combinations of inputs to printPhoto, some valid and some invalid:

printPhoto('myfile.jpg')

File name: myfile.jpg

Finish: glossy

Using defaults:

 'finish' 'color' 'width' 'height'

printPhoto(100)

Error using printPhoto (line 23)

The value of 'filename' is invalid. It must satisfy the function: ischar.

printPhoto('myfile.jpg','satin')

Error using printPhoto (line 23)

The value of 'finish' is invalid. Expected input to match one of these strings:

'glossy', 'matte'

The input, 'satin', did not match any of the valid strings.

printPhoto('myfile.jpg','height',10,'width',8)

File name: myfile.jpg

Finish: glossy

Using defaults:

 'finish' 'color'

To pass a value for the nth positional input, either specify values for the previous (n
– 1) inputs or pass the input as a parameter name and value pair. For example, these
function calls assign the same values to finish (default 'glossy') and color:

printPhoto('myfile.gif','glossy','CMYK') % positional

printPhoto('myfile.gif','color','CMYK') % name and value

See Also
inputParser | varargin

More About
• “Input Parser Validation Functions” on page 20-21

 Input Parser Validation Functions

20-21

Input Parser Validation Functions

This topic shows ways to define validation functions that you pass to the Input Parser to
check custom function inputs.

The Input Parser methods addRequired, addOptional, and addParameter each
accept an optional handle to a validation function. Designate function handles with an at
(@) symbol.

Validation functions must accept a single input argument, and they must either return
a scalar logical value (true or false) or error. If the validation function returns false,
the Input Parser issues an error and your function stops processing.

There are several ways to define validation functions:

• Use an existing MATLAB function such as ischar or isnumeric. For example,
check that a required input named num is numeric:

p = inputParser;

checknum = @isnumeric;

addRequired(p,'num',checknum)

parse(p,'text')

The value of 'num' is invalid. It must satisfy the function: isnumeric.

• Create an anonymous function. For example, check that input num is a numeric scalar
greater than zero:

p = inputParser;

checknum = @(x) isnumeric(x) && isscalar(x) && (x > 0);

addRequired(p,'num',checknum)

parse(p,rand(3))

The value of 'num' is invalid. It must satisfy the function: @(x) isnumeric(x) && isscalar(x) && (x>0).

• Define your own function, typically a local function in the same file as your primary
function. For example, in a file named usenum.m, define a local function named
checknum that issues custom error messages when the input num to usenum is not a
numeric scalar greater than zero:

function usenum(num)

 p = inputParser;

20 Function Arguments

20-22

 addRequired(p,'num',@checknum);

 parse(p,num);

function TF = checknum(x)

 TF = false;

 if ~isscalar(x)

 error('Input is not scalar');

 elseif ~isnumeric(x)

 error('Input is not numeric');

 elseif (x <= 0)

 error('Input must be > 0');

 else

 TF = true;

 end

Call the function with an invalid input:

usenum(-1)

Error using usenum (line 4)

The value of 'num' is invalid. Input must be > 0

See Also
inputParser | is* | validateattributes

Related Examples
• “Parse Function Inputs” on page 20-17
• “Create Function Handle” on page 12-2

More About
• “Anonymous Functions” on page 19-23

21

Debugging MATLAB Code

• “Debug a MATLAB Program” on page 21-2
• “Set Breakpoints” on page 21-9
• “Examine Values While Debugging” on page 21-18

21 Debugging MATLAB Code

21-2

Debug a MATLAB Program

To debug your MATLAB program graphically, use the Editor/Debugger. Alternatively,
you can use debugging functions in the Command Window. Both methods are
interchangeable.

Before you begin debugging, make sure that your program is saved and that the program
and any files it calls exist on your search path or in the current folder.

• If you run a file with unsaved changes from within the Editor, then the file is
automatically saved before it runs.

• If you run a file with unsaved changes from the Command Window, then MATLAB
software runs the saved version of the file. Therefore, you do not see the results of
your changes.

Note: Debugging using the graphical debugger is not supported in live scripts. For more
information, see “What Is a Live Script?” on page 18-22

Set Breakpoint

Set breakpoints to pause the execution of a MATLAB file so you can examine the value or
variables where you think a problem could be. You can set breakpoints using the Editor,
using functions in the Command Window, or both.

There are three different types of breakpoints: standard, conditional, and error. To add a
standard breakpoint in the Editor, click the breakpoint alley at an executable line where
you want to set the breakpoint. The breakpoint alley is the narrow column on the left side
of the Editor, to the right of the line number. Executable lines are indicated by a dash
(—) in the breakpoint alley. For example, click the breakpoint alley next to line 2 in the
code below to add a breakpoint at that line.

 Debug a MATLAB Program

21-3

If an executable statement spans multiple lines, you can set a breakpoint at each line
in that statement, even though the additional lines do not have a — (dash) in the
breakpoint alley. For example, in this code. you can set a breakpoint at all four lines:

For more information on the different types of breakpoints, see “Set Breakpoints” on page
21-9.

Run File

After setting breakpoints, run the file from the Command Window or the Editor.
Running the file produces these results:

• The Run button changes to a Pause button.
• The prompt in the Command Window changes to K>> indicating that MATLAB is in

debug mode and that the keyboard is in control.
• MATLAB pauses at the first breakpoint in the program. In the Editor, a green arrow

just to the right of the breakpoint indicates the pause. The program does not execute
the line where the pause occurs until it resumes running. For example, here the
debugger pauses before the program executes x = ones(1,10);.

21 Debugging MATLAB Code

21-4

• MATLAB displays the current workspace in the Function Call Stack, on the Editor
tab in the Debug section.

If you use debugging functions from the Command Window, use dbstack to view the
Function Call Stack.

Tip To debug a program, run the entire file. MATLAB does not stop at breakpoints when
you run an individual section.

For more information on using the Function Call Stack, see “Select Workspace” on page
21-18

Pause a Running File

To pause the execution of a program while it is running, go to the Editor tab and click
the Pause button. MATLAB pauses execution at the next executable line, and the
Pause button changes to a Continue button. To continue execution, press the
Continue button.

Pausing is useful if you want to check on the progress of a long running program to
ensure that it is running as expected.

Note: Clicking the pause button can cause MATLAB to pause in a file outside your

own program file. Pressing the Continue button resumes normal execution without
changing the results of the file.

Find and Fix a Problem

While your code is paused, you can view or change the values of variables, or you can
modify the code.

 Debug a MATLAB Program

21-5

View or Change Variable While Debugging

View the value of a variable while debugging to see whether a line of code has produced
the expected result or not. To do this, position your mouse pointer to the left of the
variable. The current value of the variable appears in a data tip.

The data tip stays in view until you move the pointer. If you have trouble getting the
data tip to appear, click the line containing the variable, and then move the pointer next
to the variable. For more information, see “Examine Values While Debugging” on page
21-18.

You can change the value of a variable while debugging to see if the new value produces
expected results. With the program paused, assign a new value to the variable in the
Command Window, Workspace browser, or Variables Editor. Then, continue running or
stepping through the program.

For example, here MATLAB is paused inside a for loop where n = 2:

• Type n = 7; in the command line to change the current value of n from 2 to 7.

21 Debugging MATLAB Code

21-6

•
Press Continue to run the next line of code.

MATLAB runs the code line x(n) = 2 * x(n-1); with n = 7.

Modify Section of Code While Debugging

You can modify a section of code while debugging to test possible fixes without having to
save your changes. Usually, it is a good practice to modify a MATLAB file after you quit
debugging, and then save the modification and run the file. Otherwise, you might get
unexpected results. However, there are situations where you want to experiment during
debugging.

To modify a program while debugging:

1 While your code is paused, modify a part of the file that has not yet run.

Breakpoints turn gray, indicating they are invalid.
2 Select all the code after the line at which MATLAB is paused, right-click, and then

select Evaluate Selection from the context menu.

After the code evaluation is complete, stop debugging and save or undo any changes
made before continuing the debugging process.

 Debug a MATLAB Program

21-7

Step Through File

While debugging, you can step through a MATLAB file, pausing at points where you
want to examine values.

This table describes available debugging actions and the different methods you can use to
execute them.

Description Toolbar Button Function Alternative

Continue execution of file until the line
where the cursor is positioned. Also
available on the context menu.

Run to Cursor
None

Execute the current line of the file. Step dbstep

Execute the current line of the file and, if
the line is a call to another function, step
into that function.

Step In dbstep in

Resume execution of file until completion or
until another breakpoint is encountered. Continue dbcont

After stepping in, run the rest of the called
function or local function, leave the called
function, and pause.

Step Out dbstep out

Pause debug mode. Pause None

Exit debug mode. Quit Debugging dbquit

End Debugging Session

After you identify a problem, end the debugging session by going to the Editor tab and

clicking Quit Debugging . You must end a debugging session if you want to change
and save a file, or if you want to run other programs in MATLAB.

After you quit debugging, pause indicators in the Editor display no longer appear, and
the normal >> prompt reappears in the Command Window in place of the K>>. You no
longer can access the call stack.

If MATLAB software becomes nonresponsive when it stops at a breakpoint, press Ctrl+c
to return to the MATLAB prompt.

21 Debugging MATLAB Code

21-8

Related Examples
• “Set Breakpoints” on page 21-9
• “Examine Values While Debugging” on page 21-18

 Set Breakpoints

21-9

Set Breakpoints

In this section...

“Standard Breakpoints” on page 21-10
“Conditional Breakpoints” on page 21-11
“Error Breakpoints” on page 21-12
“Breakpoints in Anonymous Functions” on page 21-15
“Invalid Breakpoints” on page 21-16
“Disable Breakpoints” on page 21-16
“Clear Breakpoints” on page 21-17

Setting breakpoints pauses the execution of your MATLAB program so that you can
examine values where you think a problem might be. You can set breakpoints using the
Editor or by using functions in the Command Window.

There are three types of breakpoints:

• Standard breakpoints
• Conditional breakpoints
• Error breakpoints

You can set breakpoints only at executable lines in saved files that are in the current
folder or in folders on the search path. You can set breakpoints at any time, whether
MATLAB is idle or busy running a file.

By default, MATLAB automatically opens files when it reaches a breakpoint. To disable
this option:

1
From the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Editor/Debugger.
3 Clear the Automatically open file when MATLAB reaches a breakpoint option

and click OK.

21 Debugging MATLAB Code

21-10

Note: Debugging using the graphical debugger is not supported in live scripts. For more
information, see “What Is a Live Script?” on page 18-22

Standard Breakpoints

A standard breakpoint stops at a specified line in a file. You can set a standard
breakpoint using these methods:

• Click the breakpoint alley at an executable line where you want to set the breakpoint.
The breakpoint alley is the narrow column on the left side of the Editor, to the right
of the line number. Executable lines are indicated by a — (dash) in the breakpoint
alley. If an executable statement spans multiple lines, you can set a breakpoint at
each line in that statement, even though the additional lines do not have a — (dash)
in the breakpoint alley. For example, in this code, you can set a breakpoint at all four
lines:

If you attempt to set a breakpoint at a line that is not executable, such as a comment
or a blank line, MATLAB sets it at the next executable line.

• Use the dbstop function. For example, to add a breakpoint at line 2 in a file named
myprogram.m, type:

dbstop in myprogram at 2

MATLAB adds a breakpoint at line 2 in the function myprogram.

 Set Breakpoints

21-11

To examine values at increments in a for loop, set the breakpoint within the loop, rather
than at the start of the loop. If you set the breakpoint at the start of the for loop, and
then step through the file, MATLAB stops at the for statement only once. However, if
you place the breakpoint within the loop, MATLAB stops at each pass through the loop.

Conditional Breakpoints

A conditional breakpoint causes MATLAB to stop at a specified line in a file only when
the specified condition is met. Use conditional breakpoints when you want to examine
results after some iterations in a loop.

You can set a conditional breakpoint from the Editor or Command Window:

• Editor— Right-click the breakpoint alley at an executable line where you want to set
the breakpoint and select Set/Modify Condition.

When the Editor dialog box opens, enter a condition and click OK. A condition is any
valid MATLAB expression that returns a logical scalar value.

As noted in the dialog box, MATLAB evaluates the condition before running the line.
For example, suppose that you have a file called myprogram.m.

21 Debugging MATLAB Code

21-12

Add a breakpoint with the following condition at line 6:

n >= 4

A yellow, conditional breakpoint icon appears in the breakpoint alley at that line.
• Command Window — Use the dbstop function. For example, to add a conditional

breakpoint in myprogram.m at line 6 type:

dbstop in myprogram at 6 if n>=4

When you run the file, MATLAB enters debug mode and pauses at the line when the
condition is met. In the myprogram example, MATLAB runs through the for loop
twice and pauses on the third iteration at line 6 when n is 4. If you continue executing,
MATLAB pauses again at line 6 on the fourth iteration when n is 5.

Error Breakpoints

An error breakpoint causes MATLAB to stop program execution and enter debug mode
if MATLAB encounters a problem. Unlike standard and conditional breakpoints, you
do not set these breakpoints at a specific line in a specific file. When you set an error
breakpoint, MATLAB stops at any line in any file if the error condition specified occurs.
MATLAB then enters debug mode and opens the file containing the error, with the
execution arrow at the line containing the error.

To set an error breakpoint, on the Editor tab, click Breakpoints and select from these
options:

• Stop on Errors to stop on all errors.
• Stop on Warnings to stop on all warnings.

 Set Breakpoints

21-13

• More Error and Warning Handling Options to open the Stop if Errors/
Warnings for All Files dialog box where you can choose among more options.

You also can set an error breakpoint programmatically. For more information, see
dbstop.

Advanced Error Breakpoint Configuration

To further configure error breakpoints, use the Stop if Error/Warning for All Files
dialog box. On the Editor tab, click Breakpoints and select More Error and
Warning Handling Options. Each tab in the dialog box details a specific type of error
breakpoint:

• Errors

If an error occurs, execution stops, unless the error is in a try...catch block.
MATLAB enters debug mode and opens the file to the line that produced the error.
You cannot resume execution.

• Try/Catch Errors

If an error occurs in a try...catch block, execution pauses. MATLAB enters debug
mode and opens the file to the line in the try portion of the block that produced the
error. You can resume execution or step through the file using additional debugging
features.

• Warnings

If a warning occurs, execution pauses. MATLAB enters debug mode and opens the file
to the line that produced the warning. You can resume execution or step through the
file using additional debugging features.

• NaN or Inf

If an operator, function call, or scalar assignment produces a NaN (not-a-number) or
Inf (infinite) value, execution pauses immediately after the line that encountered the
value. MATLAB enters debug mode, and opens the file. You can resume execution or
step through the file using additional debugging features.

You can select the state of each error breakpoint in the dialog box:

• Never stop... clears the error breakpoint of that type.
• Always stop... adds an error breakpoint of that type.

21 Debugging MATLAB Code

21-14

• Use message identifiers... adds a limited error breakpoint of that type. Execution
stops only for the error you specify with the corresponding message identifier.

You can add multiple message identifiers, and then edit or remove them.

Note: This option is not available for the NaN or Inf type of error breakpoint.

To add a message identifier:

1 Click the Errors, Try/Catch Errors, or Warnings tab.
2 Click Use Message Identifiers.
3 Click Add.
4 In the resulting Add Message Identifier dialog box, type the message identifier

of the error for which you want MATLAB to stop. The identifier is of the form
component:message (for example, MATLAB:narginchk:notEnoughInputs).

5 Click OK.

The message identifier you specified appears in the list of identifiers.

The function equivalent appears to the right of each option. For example, the function
equivalent for Always stop if error is dbstop if error.

Obtain Message Identifiers

To obtain an error message identifier generated by a MATLAB function, run the function
to produce the error, and then call MExeption.last. For example:

surf

MException.last

The Command Window displays the MException object, including the error message
identifier in the identifier field. For this example, it displays:

ans =

 MException

 Properties:

 identifier: 'MATLAB:narginchk:notEnoughInputs'

 message: 'Not enough input arguments.'

 cause: {}

 Set Breakpoints

21-15

 stack: [1x1 struct]

 Methods

To obtain a warning message identifier generated by a MATLAB function, run the
function to produce the warning. Then, run this command:

[m,id] = lastwarn

MATLAB returns the last warning identifier to id. An example of a warning message
identifier is MATLAB:concatenation:integerInteraction.

Breakpoints in Anonymous Functions

You can set multiple breakpoints in a line of MATLAB code that contains anonymous
functions. For example, you can set a breakpoint for the line itself, where MATLAB
software pauses at the start of the line. Or, alternatively, you can set a breakpoint for
each anonymous function in the line.

When you add a breakpoint to a line containing an anonymous function, the Editor asks
where in the line you want to add the breakpoint. If there is more than one breakpoint
in a line, the breakpoint icon is blue, regardless of the status of any of the breakpoints on
that line.

To view information about all the breakpoints on a line, hover your pointer on the
breakpoint icon. A tooltip appears with available information. For example, in this code,
line 5 contains two anonymous functions, with a breakpoint at each one. The tooltip tells
us that both breakpoints are enabled.

When you set a breakpoint in an anonymous function, MATLAB pauses when the
anonymous function is called. A green arrow shows where the code defines the
anonymous function. A white arrow shows where the code calls the anonymous functions.
For example, in this code, MATLAB pauses the program at a breakpoint set for the
anonymous function sqr, at line 2 in a file called myanonymous.m. The white arrow
indicates that the sqr function is called from line 3.

21 Debugging MATLAB Code

21-16

Invalid Breakpoints

A gray breakpoint indicates an invalid breakpoint.

Breakpoints are invalid for these reasons:

• There are unsaved changes in the file. To make breakpoints valid, save the file. The
gray breakpoints become red, indicating that they are now valid.

• There is a syntax error in the file. When you set a breakpoint, an error message
appears indicating where the syntax error is. To make the breakpoint valid, fix the
syntax error and save the file.

Disable Breakpoints

You can disable selected breakpoints so that your program temporarily ignores them and
runs uninterrupted. For example, you might disable a breakpoint after you think you
identified and corrected a problem, or if you are using conditional breakpoints.

To disable a breakpoint, right-click the breakpoint icon, and select Disable Breakpoint
from the context menu.

An X appears through the breakpoint icon to indicate that it is disabled.

When you run dbstatus, the resulting message for a disabled breakpoint is

Breakpoint on line 6 has conditional expression 'false'.

 Set Breakpoints

21-17

To reenable a breakpoint, right-click the breakpoint icon and select Enable Breakpoint
from the context menu.

The X no longer appears on the breakpoint icon and program execution pauses at that
line.

Clear Breakpoints

All breakpoints remain in a file until you clear (remove) them or until they are cleared
automatically at the end of your MATLAB session.

Too clear a breakpoint, use either of these methods:

• Right-click the breakpoint icon and select Clear Breakpoint from the context menu.
• Use the dbclear function. For example, to clear the breakpoint at line 6 in a file

called myprogram.m, type

 dbclear in myprogram at 6

To clear all breakpoints in all files:

• Place your cursor anywhere in a breakpoint line. Click Breakpoints, and select
Clear All.

• Use the dbclear all command. For example, to clear all the breakpoints in a file
called myprogram.m, type

dbclear all in myprogram

Breakpoints clear automatically when you end a MATLAB session. To save your
breakpoints for future sessions, see the dbstatus function.

Related Examples
• “Debug a MATLAB Program” on page 21-2
• “Examine Values While Debugging” on page 21-18

21 Debugging MATLAB Code

21-18

Examine Values While Debugging
While your program is paused, you can view the value of any variable currently in the
workspace. Examine values when you want to see whether a line of code produces the
expected result or not. If the result is as expected, continue running or step to the next
line. If the result is not as you expect, then that line, or a previous line, might contain an
error.

Note: Debugging using the graphical debugger is not supported in live scripts. For more
information, see “What Is a Live Script?” on page 18-22

Select Workspace

To examine a variable during debugging, you must first select its workspace. Variables
that you assign through the Command Window or create using scripts belong to the
base workspace. Variables that you create in a function belong to their own function
workspace. To view the current workspace, select the Editor tab. The Function Call
Stack field shows the current workspace. Alternatively, you can use the dbstack
function in the Command Window.

To select or change the workspace for the variable you want to view, use either of these
methods:

• From the Editor tab, in the Debug section, choose a workspace from the Function
Call Stack menu list.

• From the Command Window, use the dbup and dbdown functions to select the
previous or next workspace in the Function Call Stack.

To list the variables in the current workspace, use who or whos.

View Variable Value

There are several ways to view the value of a variable while debugging a program:

 Examine Values While Debugging

21-19

• View variable values in the Workspace browser and Variables Editor.

The Workspace browser displays all variables in the current workspace. The Value
column of the Workspace browser shows the current value of the variable. To see
more details, double-click the variable. The Variables Editor opens, displaying the
content for that variable. You also can use the openvar function to open a variable in
the Variables Editor.

• View variable values in the MATLAB Editor.

Use your mouse to select the variable or equation. Right-click and select Evaluate
Selection from the context menu. The Command Window displays the value of the
variable or equation.

21 Debugging MATLAB Code

21-20

Note: You cannot evaluate a selection while MATLAB is busy, for example, running a
file.

• View variable values as a data tip in the MATLAB Editor.

To do this, position your mouse pointer over the variable. The current value of the
variable appears in a data tip. The data tip stays in view until you move the pointer.
If you have trouble getting the data tip to appear, click the line containing the
variable, and then move the pointer next to the variable.

To view data tips, enable them in your MATLAB preferences.

1
On the Home tab, in the Environment section, click Preferences. Then
select MATLAB > Editor/Debugger > Display.

2 Under General display options, select Enable datatips in edit mode.
• View variable values in the Command Window.

To see all the variables currently in the workspace, call the who function. To view the
current value of a variable, type the variable name in the Command Window. For
the example, to see the value of a variable n, type n and press Enter. The Command
Window displays the variable name and its value.

When you set a breakpoint in a function and attempt to view the value of a variable in
a parent workspace, the value of that variable might not be available. This error occurs
when you attempt to access a variable while MATLAB is in the process of overwriting it.
In such cases, MATLAB returns the following message, where x represents the variable
whose value you are trying to examine.

K>> x

Reference to a called function result under construction x.

 Examine Values While Debugging

21-21

The error occurs whether you select the parent workspace by using the dbup command or
by using Function Call Stack field in the Debug section of the Editor tab.

Related Examples
• “Debug a MATLAB Program” on page 21-2
• “Set Breakpoints” on page 21-9

22

Presenting MATLAB Code

MATLAB software enables you to present your MATLAB code in various ways. You can
share your code and results with others, even if they do not have MATLAB software.
You can save MATLAB output in various formats, including HTML, XML, and LaTeX.
If Microsoft Word or Microsoft PowerPoint applications are on your Microsoft Windows
system, you can publish to their formats as well.

• “Options for Presenting Your Code” on page 22-2
• “Publishing MATLAB Code” on page 22-4
• “Publishing Markup” on page 22-7
• “Output Preferences for Publishing” on page 22-27
• “Create a MATLAB Notebook with Microsoft Word” on page 22-41

22 Presenting MATLAB Code

22-2

Options for Presenting Your Code

MATLAB provides options for presenting your code to others.

Method Description Output Formats Details

Command-line
help

Use comments at the start
of a MATLAB file to display
help comments when you
type help file_name in the
Command Window.

• ASCII text “Add Help for Your
Program” on page 19-5

Live Scripts Use live scripts to create
cohesive, shareable documents
that include executable
MATLAB code, embedded
output, and formatted text.

• MLX
• HTML
• PDF

“Live Scripts”

Publish Use comments with basic
markup to publish a document
that includes text, bulleted
or numbered lists, MATLAB
code, and code results.

• XML
• HTML
• LaTeX
• Microsoft Word

(.doc/.docx)
• Microsoft

PowerPoint (ppt)
• PDF

“Publishing MATLAB
Code” on page 22-4

Publishing MATLAB Code
from the Editor video

Help Browser
Topics

Create HTML and XML files
to provide your own MATLAB
help topics for viewing from
the MATLAB Help browser or
the web.

• HTML “Display Custom
Documentation” on page
29-15

Notebook Use Microsoft Word to create
electronic or printed records
of MATLAB sessions for class
notes, textbooks, or technical
reports.

• Microsoft Word
(.doc/.docx)

“Create a MATLAB
Notebook with Microsoft
Word” on page 22-41

http://www.mathworks.com/videos/publishing-matlab-code-from-the-editor-101570.html
http://www.mathworks.com/videos/publishing-matlab-code-from-the-editor-101570.html

 Options for Presenting Your Code

22-3

Method Description Output Formats Details

You must have Microsoft Word
software installed.

MATLAB
Report
Generator™

Use MATLAB Report
Generator to build complex
reports.

You must have MATLAB
Report Generator software
installed.

• RTF
• PDF
• Word
• HTML
• XML

MATLAB Report
Generator

22 Presenting MATLAB Code

22-4

Publishing MATLAB Code

Publishing a MATLAB Code file (.m) creates a formatted document that includes
your code, comments, and output. Common reasons to publish code are to share the
documents with others for teaching or demonstration, or to generate readable, external
documentation of your code. To create an interactive document that contains your code,
formatted content, and output together in the MATLAB Editor, see “Create Live Scripts”
on page 18-2.

This code demonstrates the Fourier series expansion for a square wave.

MATLAB Code with Markup Published Document

To publish your code:

1 Create a MATLAB script or function. Divide the code into steps or sections by
inserting two percent signs (%%) at the beginning of each section.

2 Document the code by adding explanatory comments at the beginning of the file and
within each section.

 Publishing MATLAB Code

22-5

Within the comments at the top of each section, you can add markup that enhances
the readability of the output. For example, the code in the preceding table includes
the following markup.

Titles %% Square Waves from Sine Waves

%% Add an Odd Harmonic and Plot It

%% Note About Gibbs Phenomenon

Variable name in
italics

% As _k_ increases, ...

LaTeX equation % $$ y = y + \frac{sin(k*t)}{k} $$

Note: When you have a file containing text that has characters in a different
encoding than that of your platform, when you save or publish your file, MATLAB
displays those characters as garbled text.

3 Publish the code. On the Publish tab, click Publish.

By default, MATLAB creates a subfolder named html, which contains an HTML file
and files for each graphic that your code creates. The HTML file includes the code,
formatted comments, and output. Alternatively, you can publish to other formats,
such as PDF files or Microsoft PowerPoint presentations. For more information on
publishing to other formats, see “Specify Output File” on page 22-28.

The sample code that appears in the previous figure is part of the installed
documentation. You can view the code in the Editor by running this command:

edit(fullfile(matlabroot,'help','techdoc','matlab_env', ...

 'examples','fourier_demo2.m'))

See Also
publish

More About
• “Options for Presenting Your Code” on page 22-2
• “Publishing Markup” on page 22-7

22 Presenting MATLAB Code

22-6

• “Output Preferences for Publishing” on page 22-27

 Publishing Markup

22-7

Publishing Markup

In this section...

“Markup Overview” on page 22-7
“Sections and Section Titles” on page 22-10
“Text Formatting” on page 22-11
“Bulleted and Numbered Lists” on page 22-12
“Text and Code Blocks” on page 22-13
“External File Content” on page 22-14
“External Graphics” on page 22-15
“Image Snapshot” on page 22-17
“LaTeX Equations” on page 22-18
“Hyperlinks” on page 22-20
“HTML Markup” on page 22-23
“LaTeX Markup” on page 22-24

Markup Overview

To insert markup, you can:

• Use the formatting buttons and drop-down menus on the Publish tab to format the
file. This method automatically inserts the text markup for you.

• Select markup from the Insert Text Markup list in the right click menu.
• Type the markup directly in the comments.

The following table provides a summary of the text markup options. Refer to this table
if you are not using the MATLAB Editor, or if you do not want to use the Publish tab to
apply the markup.

Note: When working with markup:

• Spaces following the comment symbols (%) often determine the format of the text that
follows.

22 Presenting MATLAB Code

22-8

• Starting new markup often requires preceding blank comment lines, as shown in
examples.

• Markup only works in comments that immediately follow a section break.

Result in Output Example of Corresponding File Markup

“Sections and Section Titles” on
page 22-10

%% SECTION TITLE

% DESCRIPTIVE TEXT

%%% SECTION TITLE WITHOUT SECTION BREAK

% DESCRIPTIVE TEXT

“Text Formatting” on page
22-11

% _ITALIC TEXT_

% *BOLD TEXT*

% |MONOSPACED TEXT|

% Trademarks:

% TEXT(TM)

% TEXT(R)

“Bulleted and Numbered Lists”
on page 22-12

%% Bulleted List

%

% * BULLETED ITEM 1

% * BULLETED ITEM 2

%

%% Numbered List

%

% # NUMBERED ITEM 1

% # NUMBERED ITEM 2

%

“Text and Code Blocks” on page
22-13

%%

%

% PREFORMATTED

% TEXT

%

%% MATLAB(R) Code

%

% for i = 1:10

 Publishing Markup

22-9

Result in Output Example of Corresponding File Markup
% disp x

% end

%

“External File Content” on page
22-14

%

% <include>filename.m</include>

%

“External Graphics” on page
22-15

%

% <<FILENAME.PNG>>

%

“Image Snapshot” on page
22-17

snapnow;

“LaTeX Equations” on page
22-18

%% Inline Expression

% $x^2+e^{\pi i}$

%% Block Equation

% $$e^{\pi i} + 1 = 0$$

“Hyperlinks” on page 22-20 % <http://www.mathworks.com MathWorks>

% <matlab:FUNCTION DISPLAYED_TEXT>

“HTML Markup” on page
22-23

%

% <html>

% <table border=1><tr>

% <td>one</td>

% <td>two</td></tr></table>

% </html>

%

“LaTeX Markup” on page
22-24

%% LaTeX Markup Example

% <latex>

% \begin{tabular}{|r|r|}

% \hline n&$n!$\\

% \hline 1&1\\ 2&2\\ 3&6\\

% \hline

% \end{tabular}

% </latex>

%

22 Presenting MATLAB Code

22-10

Sections and Section Titles

Code sections allow you to organize, add comments, and execute portions of your code.
Code sections begin with double percent signs (%%) followed by an optional section title.
The section title displays as a top-level heading (h1 in HTML), using a larger, bold font.

Note: You can add comments in the lines immediately following the title. However, if you
want an overall document title, you cannot add any MATLAB code before the start of the
next section (a line starting with %%).

For instance, this code produces a polished result when published.

%% Vector Operations

% You can perform a number of binary operations on vectors.

%%

A = 1:3;

B = 4:6;

%% Dot Product

% A dot product of two vectors yields a scalar.

% MATLAB has a simple command for dot products.

s = dot(A,B);

%% Cross Product

% A cross product of two vectors yields a third

% vector perpendicular to both original vectors.

% Again, MATLAB has a simple command for cross products.

v = cross(A,B);

By saving the code in an Editor and clicking the Publish button on the Publish
tab, MATLAB produces the output as shown in this figure. Notice that MATLAB
automatically inserts a Contents menu from the section titles in the MATLAB file.

 Publishing Markup

22-11

Text Formatting

You can mark selected strings in the MATLAB comments so that they display in italic,
bold, or monospaced text when you publish the file. Simply surround the text with _, *,
or | for italic, bold, or monospaced text, respectively.

For instance, these lines display each of the text formatting syntaxes if published.

%% Calculate and Plot Sine Wave

% _Define_ the *range* for |x|

22 Presenting MATLAB Code

22-12

Trademark Symbols

If the comments in your MATLAB file include trademarked terms, you can include
text to produce a trademark symbol (™) or registered trademark symbol (®) in the
output. Simply add (R) or (TM) directly after the term in question, without any space in
between.

For example, suppose that you enter these lines in a file.

%% Basic Matrix Operations in MATLAB(R)

% This is a demonstration of some aspects of MATLAB(R)

% software and the Neural Network Toolbox(TM) software.

If you publish the file to HTML, it appears in the MATLAB web browser.

Bulleted and Numbered Lists

MATLAB allows bulleted and numbered lists in the comments. You can use this syntax
to produce bulleted and numbered lists.

%% Two Lists

%

% * ITEM1

% * ITEM2

%

% # ITEM1

% # ITEM2

%

Publishing the example code produces this output.

 Publishing Markup

22-13

Text and Code Blocks

Preformatted Text

Preformatted text appears in monospace font, maintains white space, and does not wrap
long lines. Two spaces must appear between the comment symbol and the text of the first
line of the preformatted text.

Publishing this code produces a preformatted paragraph.

%%

% Many people find monospaced texts easier to read:

%

% A dot product of two vectors yields a scalar.

% MATLAB has a simple command for dot products.

Syntax Highlighted Sample Code

Executable code appears with syntax highlighting in published documents. You also can
highlight sample code. Sample code is code that appears within comments.

22 Presenting MATLAB Code

22-14

To indicate sample code, you must put three spaces between the comment symbol and the
start of the first line of code. For example, clicking the Code button on the Publish tab
inserts the following sample code in your Editor.

%%

%

% for i = 1:10

% disp(x)

% end

%

Publishing this code to HTML produces output in the MATLAB web browser.

External File Content

To add external file content into MATLAB published code, use the <include> markup.
Specify the external file path relative to the location of the published file. Included
MATLAB code files publish as syntax highlighted code. Any other files publish as plain
text.

For example, this code inserts the contents of sine_wave.m into your published output:

%% External File Content Example

% This example includes the file contents of sine_wave.m into published

% output.

%

% <include>sine_wave.m</include>

%

% The file content above is properly syntax highlighted

Publish the file to HTML.

 Publishing Markup

22-15

External Graphics

To publish an image that the MATLAB code does not generate, use text markup. By
default, MATLAB already includes code-generated graphics.

This code inserts a generic image called FILENAME.PNG into your published output.

%%

%

% <<FILENAME.PNG>>

%

MATLAB requires that FILENAME.PNG be a relative path from the output location to
your external image or a fully qualified URL. Good practice is to save your image in the
same folder that MATLAB publishes its output. For example, MATLAB publishes HTML
documents to a subfolder html. Save your image file in the same subfolder. You can
change the output folder by changing the publish configuration settings.

External Graphics Example Using surf(peaks)

This example shows how to insert surfpeaks.jpg into a MATLAB file for publishing.

To create the surfpeaks.jpg, run this code in the Command Window.

saveas(surf(peaks),'surfpeaks.jpg');

To produce an HTML file containing surfpeaks.jpg from a MATLAB file:

22 Presenting MATLAB Code

22-16

1 Create a subfolder called html in your current folder.
2 Create surfpeaks.jpg by running this code in the Command Window.

saveas(surf(peaks),'html/surfpeaks.jpg');

3 Publish this MATLAB code to HTML.

%% Image Example

% This is a graphic:

%

% <<surfpeaks.jpg>>

%

Valid Image Types for Output File Formats

The type of images you can include when you publish depends on the output type of that
document as indicated in this table. For greatest compatibility, best practice is to use the
default image format for each output type.

 Publishing Markup

22-17

Output File Format Default Image Format Types of Images You Can Include

doc png Any format that your installed version of
Microsoft Office supports.

html png All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

latex png or epsc2 All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

pdf bmp bmp and jpg.
ppt png Any format that your installed version of

Microsoft Office supports.
xml png All formats publish successfully. Ensure

that the tools you use to view and process
the output files can display the output
format you specify.

Image Snapshot

You can insert code that captures a snapshot of your MATLAB output. This is useful, for
example, if you have a for loop that modifies a figure that you want to capture after each
iteration.

The following code runs a for loop three times and produces output after every iteration.
The snapnow command captures all three images produced by the code.

%% Scale magic Data and Display as Image

for i=1:3

 imagesc(magic(i))

 snapnow;

end

If you publish the file to HTML, it resembles the following output. By default, the
images in the HTML are larger than shown in the figure. To resize images generated
by MATLAB code, use the Max image width and Max image height fields in the

22 Presenting MATLAB Code

22-18

Publish settings pane, as described in “Output Preferences for Publishing” on page
22-27.

LaTeX Equations

Inline LaTeX Expression

MATLAB enables you to include an inline LaTeX expression in any code that you intend
to publish. To insert an inline expression, surround your LaTeX markup with dollar sign
characters ($). The $ must immediately precede the first word of the inline expression,
and immediately follow the last word of the inline expression, without any space in
between.

Note:

• All publishing output types support LaTeX expressions, except Microsoft PowerPoint.

• MATLAB publishing supports standard LaTeX math mode directives. Text mode
directives or directives that require additional packages are not supported.

This code contains a LaTeX expression:

 Publishing Markup

22-19

%% LaTeX Inline Expression Example

%

% This is an equation: $x^2+e^{\pi i}$. It is

% inline with the text.

If you publish the sample text markup to HTML, this is the resulting output.

LaTeX Display Equation

MATLAB enables you to insert LaTeX symbols in blocks that are offset from the main
comment text. Two dollar sign characters ($$) on each side of an equation denote a
block LaTeX equation. Publishing equations in separate blocks requires a blank line in
between blocks.

This code is a sample text markup.

%% LaTeX Equation Example

%

% This is an equation:

%

% $$e^{\pi i} + 1 = 0$$

%

% It is not in line with the text.

If you publish to HTML, the expression appears as shown here.

22 Presenting MATLAB Code

22-20

Hyperlinks

Static Hyperlinks

You can insert static hyperlinks within a MATLAB comment, and then publish the file
to HTML, XML, or Microsoft Word. When specifying a static hyperlink to a web location,
include a complete URL within the code. This is useful when you want to point the
reader to a web location. You can display or hide the URL in the published text. Consider
excluding the URL, when you are confident that readers are viewing your output online
and can click the hyperlink.

Enclose URLs and any replacement text in angled brackets.

%%

% For more information, see our web site:

% <http://www.mathworks.com MathWorks>

Publishing the code to HTML produces this output.

Eliminating the text MathWorks after the URL produces this modified output.

 Publishing Markup

22-21

Note: If your code produces hyperlinked text in the MATLAB Command Window, the
output shows the HTML code rather than the hyperlink.

Dynamic Hyperlinks

You can insert dynamic hyperlinks, which MATLAB evaluates at the time a reader
clicks that link. Dynamic hyperlinks enable you to point the reader to MATLAB code
or documentation, or enable the reader to run code. You implement these links using
matlab: syntax. If the code that follows the matlab: declaration has spaces in it,
replace them with %20.

Note: Dynamic links only work when viewing HTML in the MATLAB web browser.

Diverse uses of dynamic links include:

• “Dynamic Link to Run Code” on page 22-21
• “Dynamic Link to a File” on page 22-22
• “Dynamic Link to a MATLAB Function Reference Page” on page 22-22

Dynamic Link to Run Code

You can specify a dynamic hyperlink to run code when a user clicks the hyperlink. For
example, this matlab: syntax creates hyperlinks in the output, which when clicked
either enable or disable recycling:

%% Recycling Preference

% Click the preference you want:

%

% <matlab:recycle('off') Disable recycling>

%

% <matlab:recycle('on') Enable recycling>

The published result resembles this HTML output.

22 Presenting MATLAB Code

22-22

When you click one of the hyperlinks, MATLAB sets the recycle command accordingly.
After clicking a hyperlink, run recycle in the Command Window to confirm that the
setting is as you expect.

Dynamic Link to a File

You can specify a link to a file that you know is in the matlabroot of your reader. You
do not need to know where each reader installed MATLAB. For example, link to the
function code for publish.
%%

% See the

% <matlab:edit(fullfile(matlabroot,'toolbox','matlab','codetools','publish.m')) code>

% for the publish function.

Next, publish the file to HTML.

When you click the code link, the MATLAB Editor opens and displays the code for the
publish function. On the reader's system, MATLAB issues the command (although the
command does not appear in the reader's Command Window).

Dynamic Link to a MATLAB Function Reference Page

You can specify a link to a MATLAB function reference page using matlab: syntax. For
example, suppose that your reader has MATLAB installed and running. Provide a link to
the publish reference page.

 Publishing Markup

22-23

%%

% See the help for the <matlab:doc('publish') publish> function.

Publish the file to HTML.

When you click the publish hyperlink, the MATLAB Help browser opens and displays
the reference page for the publish function. On the reader's system, MATLAB issues
the command, although the command does not appear in the Command Window.

HTML Markup

You can insert HTML markup into your MATLAB file. You must type the HTML markup
since no button on the Publish tab generates it.

Note: When you insert text markup for HTML code, the HTML code publishes only when
the specified output file format is HTML.

This code includes HTML tagging.

%% HTML Markup Example

% This is a table:

%

% <html>

% <table border=1><tr><td>one</td><td>two</td></tr>

% <tr><td>three</td><td>four</td></tr></table>

% </html>

%

If you publish the code to HTML, MATLAB creates a single-row table with two columns.
The table contains the values one, two, three, and four.

22 Presenting MATLAB Code

22-24

If a section produces command-window output that starts with <html> and ends with
</html>, MATLAB includes the source HTML in the published output. For example,
MATLAB displays the disp command and makes a table from the HTML code if you
publish this code:

disp('<html><table><tr><td>1</td><td>2</td></tr></table></html>')

LaTeX Markup

You can insert LaTeX markup into your MATLAB file. You must type all LaTeX markup
since no button on the Publish tab generates it.

Note: When you insert text markup for LaTeX code, that code publishes only when the
specified output file format is LaTeX.

This code is an example of LaTeX markup.

 Publishing Markup

22-25

%% LaTeX Markup Example

% This is a table:

%

% <latex>

% \begin{tabular}{|c|c|} \hline

% n & $n!$ \\ \hline

% 1 & 1 \\

% 2 & 2 \\

% 3 & 6 \\ \hline

% \end{tabular}

% </latex>

If you publish the file to LaTeX, then the Editor opens a new .tex file containing the
LaTeX markup.

% This LaTeX was auto-generated from MATLAB code.

% To make changes, update the MATLAB code and republish this document.

\documentclass{article}

\usepackage{graphicx}

\usepackage{color}

\sloppy

\definecolor{lightgray}{gray}{0.5}

\setlength{\parindent}{0pt}

\begin{document}

\section*{LaTeX Markup Example}

\begin{par}

This is a table:

\end{par} \vspace{1em}

\begin{par}

\begin{tabular}{|c|c|} \hline

n & $n!$ \\ \hline

1 & 1 \\

2 & 2 \\

3 & 6 \\ \hline

\end{tabular}

22 Presenting MATLAB Code

22-26

\end{par} \vspace{1em}

\end{document}

MATLAB includes any additional markup necessary to compile this file with a LaTeX
program.

More About
• “Options for Presenting Your Code” on page 22-2
• “Publishing MATLAB Code” on page 22-4
• “Output Preferences for Publishing” on page 22-27

 Output Preferences for Publishing

22-27

Output Preferences for Publishing

In this section...

“How to Edit Publishing Options” on page 22-27
“Specify Output File” on page 22-28
“Run Code During Publishing” on page 22-29
“Manipulate Graphics in Publishing Output” on page 22-31
“Save a Publish Setting” on page 22-36
“Manage a Publish Configuration” on page 22-37

How to Edit Publishing Options

Use the default publishing preferences if your code requires no input arguments and
you want to publish to HTML. However, if your code requires input arguments, or if you
want to specify output settings, code execution, or figure formats, then specify a custom
configuration.

1 Locate the Publish tab and click the Publish button arrow .

2 Select Edit Publishing Options.

The Edit Configurations dialog box opens. Specify output preferences.

22 Presenting MATLAB Code

22-28

The MATLAB expression pane specifies the code that executes during publishing. The
Publish settings pane contains output, figure, and code execution options. Together,
they make what MATLAB refers to as a publish configuration. MATLAB associates each
publish configuration with an .m file. The name of the publish configuration appears in
the top left pane.

Specify Output File

You specify the output format and location on the Publish settings pane.

MATLAB publishes to these formats.

Format Notes

html Publishes to an HTML document. You can use an Extensible
Stylesheet Language (XSL) file.

xml Publishes to XML document. You can use an Extensible Stylesheet
Language (XSL) file.

latex Publishes to LaTeX document. Does not preserve syntax highlighting.
You can use an Extensible Stylesheet Language (XSL) file.

 Output Preferences for Publishing

22-29

Format Notes

doc Publishes to a Microsoft Word document. Does not preserve syntax
highlighting. This format is only available on Windows platforms.

ppt Publishes to a Microsoft PowerPoint document. Does not preserve
syntax highlighting. This format is only available on Windows
platforms.

pdf Publishes to a PDF document.

Note: XSL files allow you more control over the appearance of the output document. For
more details, see http://docbook.sourceforge.net/release/xsl/current/doc/.

Run Code During Publishing

• “Specifying Code” on page 22-29
• “Evaluating Code” on page 22-30
• “Including Code” on page 22-30
• “Catching Errors” on page 22-31
• “Limiting the Amount of Output” on page 22-31

Specifying Code

By default, MATLAB executes the .m file that you are publishing. However, you can
specify any valid MATLAB code in the MATLAB expression pane. For example,
if you want to publish a function that requires input, then run the command
function(input). Additional code, whose output you want to publish, appears after
the functions call. If you clear the MATLAB expression area, then MATLAB publishes
the file without evaluating any code.

Note: Publish configurations use the base MATLAB workspace. Therefore, a variable in
the MATLAB expression pane overwrites the value for an existing variable in the base
workspace.

http://docbook.sourceforge.net/release/xsl/current/doc/

22 Presenting MATLAB Code

22-30

Evaluating Code

Another way to affect what MATLAB executes during publishing is to set the Evaluate
code option in the Publish setting pane. This option indicates whether MATLAB
evaluates the code in the .m file that is publishing. If set to true, MATLAB executes the
code and includes the results in the output document.

Because MATLAB does not evaluate the code nor include code results when you set the
Evaluate code option to false, there can be invalid code in the file. Therefore, consider
first running the file with this option set to true.

For example, suppose that you include comment text, Label the plot, in a file, but
forget to preface it with the comment character. If you publish the document to HTML,
and set the Evaluate code option to true, the output includes an error.

Use the false option to publish the file that contains the publish function. Otherwise,
MATLAB attempts to publish the file recursively.

Including Code

You can specify whether to display MATLAB code in the final output. If you set the
Include code option to true, then MATLAB includes the code in the published output
document. If set to false, MATLAB excludes the code from all output file formats,
except HTML.

If the output file format is HTML, MATLAB inserts the code as an HTML comment that
is not visible in the web browser. If you want to extract the code from the output HTML
file, use the MATLAB grabcode function.

 Output Preferences for Publishing

22-31

For example, suppose that you publish H:/my_matlabfiles/my_mfiles/
sine_wave.m to HTML using a publish configuration with the Include code option set
to false. If you share the output with colleagues, they can view it in a web browser. To
see the MATLAB code that generated the output, they can issue the following command
from the folder containing sine_wave.html:

grabcode('sine_wave.html')

MATLAB opens the file that created sine_wave.html in the Editor.

Catching Errors

You can catch and publish any errors that occur during publishing. Setting the Catch
error option to true includes any error messages in the output document. If you set
Catch error to false, MATLAB terminates the publish operation if an error occurs
during code evaluation. However, this option has no effect if you set the Evaluate code
property to false.

Limiting the Amount of Output

You can limit the number of lines of code output that is included in the output document
by specifying the Max # of output lines option in the Publish settings pane. Setting
this option is useful if a smaller, representative sample of the code output suffices.

For example, the following loop generates 100 lines in a published output unless Max #
of output lines is set to a lower value.

for n = 1:100

 disp(x)

end;

Manipulate Graphics in Publishing Output

• “Choosing an Image Format” on page 22-31
• “Setting an Image Size” on page 22-32
• “Capturing Figures” on page 22-33
• “Specifying a Custom Figure Window” on page 22-33
• “Creating a Thumbnail” on page 22-35

Choosing an Image Format

When publishing, you can choose the image format that MATLAB uses to store any
graphics generated during code execution. The available image formats in the drop-

22 Presenting MATLAB Code

22-32

down list depend on the setting of the Figure capture method option. For greatest
compatibility, select the default as specified in this table.

Output File Format Default Image Format Types of Images You Can Include

doc png Any format that your installed version of
Microsoft Office supports.

html png All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

latex png or epsc2 All formats publish successfully. Ensure
that the tools you use to view and process
the output files can display the output
format you specify.

pdf bmp bmp and jpg.
ppt png Any format that your installed version of

Microsoft Office supports.
xml png All formats publish successfully. Ensure

that the tools you use to view and process
the output files can display the output
format you specify.

Setting an Image Size

You set the size of MATLAB generated images in the Publish settings pane on the
Edit Configurations dialog window. You specify the image size in pixels to restrict the
width and height of images in the output. The pixel values act as a maximum size value
because MATLAB maintains an image’s aspect ratio. MATLAB ignores the size setting
for the following cases:

• When working with external graphics as described in “External Graphics” on page
22-15

• When using vector formats, such as .eps
• When publishing to .pdf

 Output Preferences for Publishing

22-33

Capturing Figures

You can capture different aspects of the Figure window by setting the Figure capture
method option. This option determines the window decorations (title bar, toolbar, menu
bar, and window border) and plot backgrounds for the Figure window.

This table summarizes the effects of the various Figure capture methods.

Use This Figure Capture
Method

To Get Figure Captures with These Appearance Details

 Window Decorations Plot Backgrounds

entireGUIWindow Included for dialog boxes; Excluded
for figures

Set to white for figures; matches
the screen for dialog boxes

print Excluded for dialog boxes and
figures

Set to white

getframe Excluded for dialog boxes and
figures

Matches the screen plot
background

entireFigureWindow Included for dialog boxes and
figures

Matches the screen plot
background

Note: Typically, MATLAB figures have the HandleVisibility property set to
on. Dialog boxes are figures with the HandleVisibility property set to off or
callback. If your results are different from the results listed in the preceding table, the
HandleVisibility property of your figures or dialog boxes might be atypical. For more
information, see HandleVisibility.

Specifying a Custom Figure Window

MATLAB allows you to specify custom appearance for figures it creates. If the Use new
figure option in the Publish settings pane is set to true, then in the published output,
MATLAB uses a Figure window at the default size and with a white background. If the
Use new figure option is set to false, then MATLAB uses the properties from an open
Figure window to determine the appearance of code-generated figures. This preference
does not apply to figures included using the syntax in “External Graphics” on page 22-15.

Use the following code as a template to produce Figure windows that meet your needs.

% Create figure

22 Presenting MATLAB Code

22-34

figure1 = figure('Name','purple_background',...

'Color',[0.4784 0.06275 0.8941]);

colormap('hsv');

% Create subplot

subplot(1,1,1,'Parent',figure1);

box('on');

% Create axis labels

xlabel('x-axis');

ylabel({'y-axis'})

% Create title

title({'Title'});

% Enable printed output to match colors on screen

set(figure1,'InvertHardcopy','off')

 Output Preferences for Publishing

22-35

By publishing your file with this window open and the Use new figure option set to
false, any code-generated figure takes the properties of the open Figure window.

Note: You must set the Figure capture method option to entireFigureWindow for
the final published figure to display all the properties of the open Figure window.

Creating a Thumbnail

You can save the first code-generated graphic as a thumbnail image. You can use this
thumbnail to represent your file on HTML pages. To create a thumbnail, follow these
steps:

22 Presenting MATLAB Code

22-36

1 On the Publish tab, click the Publish button drop-down arrow and select Edit
Publishing Options. The Edit Configurations dialog box opens.

2 Set the Image Format option to a bitmap format, such as .png or .jpg. MATLAB
creates thumbnail images in bitmap formats.

3 Set the Create thumbnail option to true.

MATLAB saves the thumbnail image in the folder specified by the Output folder
option in the Publish settings pane.

Save a Publish Setting

You can save your publish settings, which allows you to reproduce output easily. It can be
useful to save your commonly used publish settings.

When the Publish settings options are set, you can follow these steps to save the
settings:

 Output Preferences for Publishing

22-37

1 Click Save As when the options are set in the manner you want.

The Save Publish Settings As dialog box opens and displays the names of all the
currently defined publish settings. By default the following publish settings install
with MATLAB:

• Factory Default

You cannot overwrite the Factory Default and can restore them by selecting
Factory Default from the Publish settings list.

• User Default

Initially, User Default settings are identical to the Factory Default
settings. You can overwrite the User Default settings.

2 In the Settings Name field, enter a meaningful name for the settings. Then click
Save.

You can now use the publish settings with other MATLAB files.

You also can overwrite the publishing properties saved under an existing name.
Select the name from the Publish settings list, and then click Overwrite.

Manage a Publish Configuration

• “Running an Existing Publish Configuration” on page 22-38
• “Creating Multiple Publish Configurations for a File” on page 22-38
• “Reassociating and Renaming Publish Configurations” on page 22-39
• “Using Publish Configurations Across Different Systems” on page 22-40

Together, the code in the MATLAB expression pane and the settings in the Publish
settings pane make a publish configuration that is associated with one file. These
configurations provide a simple way to refer to publish preferences for individual files.

To create a publish configuration, click the Publish button drop-down arrow on the
Publish tab, and select Edit Publishing Options. The Edit Configurations dialog box
opens, containing the default publish preferences. In the Publish configuration name
field, type a name for the publish configuration, or accept the default name. The publish
configuration saves automatically.

22 Presenting MATLAB Code

22-38

Running an Existing Publish Configuration

After saving a publish configuration, you can run it without opening the Edit
Configurations dialog box:

1 Click the Publish button drop-down arrow If you position your mouse pointer on
a publish configuration name, MATLAB displays a tooltip showing the MATLAB
expression associated with the specific configuration.

2 Select a configuration name to use for the publish configuration. MATLAB publishes
the file using the code and publish settings associated with the configuration.

Creating Multiple Publish Configurations for a File

You can create multiple publish configurations for a given file. You might do this to
publish the file with different values for input arguments, with different publish setting
property values, or both. Create a named configuration for each purpose, all associated
with the same file. Later you can run whichever particular publish configuration you
want.

Use the following steps as a guide to create new publish configurations.

1 Open a file in your Editor.
2 Click the Publish button drop-down arrow, and select Edit Publishing Options.

The Edit Configurations dialog box opens.
3

Click the Add button located on the left pane.

A new name appears on the configurations list, filename_n, where the value of n
depends on the existing configuration names.

 Output Preferences for Publishing

22-39

4 If you modify settings in the MATLAB expression or Publish setting pane,
MATLAB automatically saves the changes.

Reassociating and Renaming Publish Configurations

Each publish configuration is associated with a specific file. If you move or rename
a file, redefine its association. If you delete a file, consider deleting the associated
configurations, or associating them with a different file.

When MATLAB cannot associate a configuration with a file, the Edit Configurations
dialog box displays the file name in red and a File Not Found message. To reassociate a
configuration with another file, perform the following steps.

1 Click the Clear search button on the left pane of the Edit Configurations dialog
box.

2 Select the file for which you want to reassociate publish configurations.
3 In the right pane of the Edit Configurations dialog box, click Choose.... In the Open

dialog box, navigate to and select the file with which you want to reassociate the
configurations.

You can rename the configurations at any time by selecting a configuration from the list
in the left pane. In the right pane, edit the value for the Publish configuration name.

22 Presenting MATLAB Code

22-40

Note: To run correctly after a file name change, you might need to change the code
statements in the MATLAB expression pane. For example, change a function call to
reflect the new file name for that function.

Using Publish Configurations Across Different Systems

Each time you create or save a publish configuration using the Edit Configurations
dialog box, the Editor updates the publish_configurations.m file in your preferences
folder. (This is the folder that MATLAB returns when you run the MATLAB prefdir
function.)

Although you can port this file from the preferences folder on one system to another, only
one publish_configurations.m file can exist on a system. Therefore, only move the
file to another system if you have not created any publish configurations on the second
system. In addition, because the publish_configurations.m file might contain
references to file paths, be sure that the specified files and paths exist on the second
system.

MathWorks recommends that you not update publish_configurations.m in the
MATLAB Editor or a text editor. Changes that you make using tools other than the Edit
Configurations dialog box might be overwritten later.

More About
• “Options for Presenting Your Code” on page 22-2
• “Publishing MATLAB Code” on page 22-4
• “Publishing Markup” on page 22-7

 Create a MATLAB Notebook with Microsoft Word

22-41

Create a MATLAB Notebook with Microsoft Word

In this section...

“Getting Started with MATLAB Notebooks” on page 22-41
“Creating and Evaluating Cells in a MATLAB Notebook” on page 22-43
“Formatting a MATLAB Notebook” on page 22-48
“Tips for Using MATLAB Notebooks” on page 22-50
“Configuring the MATLAB Notebook Software” on page 22-51

Getting Started with MATLAB Notebooks

You can use the notebook function to open Microsoft Word and record MATLAB
sessions to supplement class notes, textbooks, or technical reports. After executing
the notebook function, you run MATLAB commands directly from Word itself. This
Word document is known as a MATLAB Notebook. As an alternative, consider using the
MATLAB publish function.

Using the notebook command, you create a Microsoft Word document. You then can
type text, input cells (MATLAB commands), and output cells (results of MATLAB
commands) directly into this document. You can format the input in the same manner
as any Microsoft Word document. You can think of this document as a record of an
interactive MATLAB session annotated with text, or as a document embedded with live
MATLAB commands and output.

Note The notebook command is available only on Windows systems that have Microsoft
Word installed.

Creating or Opening a MATLAB Notebook

If you are running the notebook command for the first time since you installed a new
version of MATLAB, follow the instructions in “Configuring the MATLAB Notebook
Software” on page 22-51. Otherwise, you can create a new or open an existing
notebook:

• To open a new notebook, execute the notebook function in the MATLAB Command
Window.

22 Presenting MATLAB Code

22-42

The notebook command starts Microsoft Word on your system and creates a
MATLAB Notebook, called Document1. If a dialog box appears asking you to enable
or disable macros, choose to enable macros.

Word adds the Notebook menu to the Word Add-Ins tab, as shown in the following
figure.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.
• To open an existing notebook, execute notebook file_name in the MATLAB

Command Window, where file_name is the name of an existing MATLAB notebook.

Converting a Word Document to a MATLAB Notebook

To convert a Microsoft Word document to a MATLAB Notebook, insert the document into
a notebook file:

1 Create a MATLAB Notebook.
2 From the Insert tab, in the Text group, click the arrow next to Object.
3 Select Text from File. The Insert File dialog box opens.
4 Navigate and select the Word file that you want to convert in the Insert File dialog

box.

Running Commands in a MATLAB Notebook

You enter MATLAB commands in a notebook the same way you enter text in any other
Word document. For example, you can enter the following text in a Word document. The
example uses text in Courier Font, but you can use any font:

Here is a sample MATLAB Notebook.

a = magic(3)

 Create a MATLAB Notebook with Microsoft Word

22-43

Execute a single command by pressing Crtl+Enter on the line containing the MATLAB
command. Execute a series of MATLAB commands using these steps:

1 Highlight the commands you want to execute.
2 Click the Notebook drop-down list on the Add-Ins tab.
3 Select Evaluate Cell.

MATLAB displays the results in the Word document below the original command or
series of commands.

Note A good way to experiment with MATLAB Notebook is to open a sample notebook,
Readme.doc. You can find this file in the matlabroot/notebook/pc folder.

Creating and Evaluating Cells in a MATLAB Notebook

• “Creating Input Cells” on page 22-43
• “Evaluating Input Cells” on page 22-45
• “Undefining Cells” on page 22-47
• “Defining Calc Zones” on page 22-47

Creating Input Cells

Input cells allow you to break up your code into manageable pieces and execute them
independently. To define a MATLAB command in a Word document as an input cell:

1 Type the command into the MATLAB Notebook as text. For example,

This is a sample MATLAB Notebook.

a = magic(3)

2 Position the cursor anywhere in the command, and then select Define Input Cell
from the Notebook drop-down list. If the command is embedded in a line of text, use
the mouse to select it. The characters appear within cell markers ([]). Cell markers
are bold, gray brackets. They differ from the brackets used to enclose matrices by
their size and weight.

[a = magic(3)]

Creating Autoinit Input Cells

Autoinit cells are identical to input cells with additional characteristics:

22 Presenting MATLAB Code

22-44

• Autoinit cells evaluate when MATLAB Notebook opens.
• Commands in autoinit cells display in dark blue characters.

To create an autoinit cell, highlight the text, and then select Define AutoInit Cell from
the Notebook drop-down list.
Creating Cell Groups

You can collect several input cells into a single input cell, called a cell group. All the
output from a cell group appears in a single output cell immediately after the group. Cell
groups are useful when you need several MATLAB commands to execute in sequence.
For instance, defining labels and tick marks in a plot requires multiple commands:

x = -pi:0.1:pi;

plot(x,cos(x))

title('Sample Plot')

xlabel('x')

ylabel('cos(x)')

set(gca,'XTick',-pi:pi:pi)

set(gca,'XTickLabel',{'-pi','0','pi'})

To create a cell group:

1 Use the mouse to select the input cells that are to make up the group.
2 Select Group Cells from the Notebook drop-down list.

A single pair of cell markers now surrounds the new cell group.

[x = -pi:0.1:pi;

plot(x,cos(x))

title('Sample Plot')

xlabel('x')

ylabel('cos(x)')

set(gca,'XTick',-pi:pi:pi)

set(gca,'XTickLabel',{'-pi','0','pi'})]

When working with cell groups, you should note several behaviors:

• A cell group cannot contain output cells. If the selection includes output cells, they are
deleted.

• A cell group cannot contain text. If the selection includes text, the text appears after
the cell group, unless it precedes the first input cell in the selection.

• If you select part or all of an output cell, the cell group includes the respective input
cell.

 Create a MATLAB Notebook with Microsoft Word

22-45

• If the first line of a cell group is an autoinit cell, then the entire group is an autoinit
cell.

Evaluating Input Cells

After you define a MATLAB command as an input cell, you can evaluate it in your
MATLAB Notebook using these steps:

1 Highlight or place your cursor in the input cell you want to evaluate.
2 Select Evaluate Cell in the Notebook drop-down list, or press Ctrl+Enter.

The notebook evaluates and displays the results in an output cell immediately
following the input cell. If there is already an output cell, its contents update
wherever the output cell appears in the notebook. For example:

This is a sample MATLAB Notebook.

[a = magic(3)]

[a =

 8 1 6

 3 5 7

 4 9 2]

To evaluate more than one MATLAB command contained in different, but contiguous
input cells:

1 Select a range of cells that includes the input cells you want to evaluate. You can
include text that surrounds input cells in your selection.

2 Select Evaluate Cell in the Notebook drop-down list or press Ctrl+Enter.

Note Text or numeric output always displays first, regardless of the order of the
commands in the group.

When each input cell evaluates, new output cells appear or existing ones are replaced.
Any error messages appear in red, by default.
Evaluating Cell Groups

Evaluate a cell group the same way you evaluate an input cell (because a cell group is an
input cell):

22 Presenting MATLAB Code

22-46

1 Position the cursor anywhere in the cell or in its output cell.
2 Select Evaluate Cell in the Notebook drop-down list or press Ctrl+Enter.

When MATLAB evaluates a cell group, the output for all commands in the group appears
in a single output cell. By default, the output cell appears immediately after the cell
group the first time the cell group is evaluated. If you evaluate a cell group that has an
existing output cell, the results appear in that output cell, wherever it is located in the
MATLAB Notebook.

Using a Loop to Evaluate Input Cells Repeatedly

MATLAB allows you to evaluate a sequence of MATLAB commands repeatedly, using
these steps:

1 Highlight the input cells, including any text or output cells located between them.
2 Select Evaluate Loop in the Notebook drop-down list. The Evaluate Loop dialog

box appears.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.
3 Enter the number of times you want to evaluate the selected commands in the Stop

After field, then click Start. The button changes to Stop. Command evaluation
begins, and the number of completed iterations appears in the Loop Count field.

You can increase or decrease the delay at the end of each iteration by clicking Slower or
Faster.

Evaluating an Entire MATLAB Notebook

To evaluate an entire MATLAB Notebook, select Evaluate MATLAB Notebook in the
Notebook drop-down list. Evaluation begins at the top of the notebook, regardless of

 Create a MATLAB Notebook with Microsoft Word

22-47

the cursor position and includes each input cell in the file. As it evaluates the file, Word
inserts new output cells or replaces existing output cells.

If you want to stop evaluation if an error occurs, set the Stop evaluating on error
check box on the Notebook Options dialog box.

Undefining Cells

You can always convert cells back to normal text. To convert a cell (input, output, or a
cell group) to text:

1 Highlight the input cell or position the cursor in the input cell.
2 Select Undefine Cells from the Notebook drop-down list.

When the cell converts to text, the cell contents reformat according to the Microsoft Word
Normal style.

Note

• Converting input cells to text also converts their output cells.

• If the output cell is graphical, the cell markers disappear and the graphic dissociates
from its input cell, but the contents of the graphic remain.

Defining Calc Zones

You can partition a MATLAB Notebook into self-contained sections, called calc zones. A
calc zone is a contiguous block of text, input cells, and output cells. Section breaks appear
before and after the section, defining the calc zone. The section break indicators include
bold, gray brackets to distinguish them from standard Word section breaks.

You can use calc zones to prepare problem sets, making each problem a calc zone that
you can test separately. A notebook can contain any number of calc zones.

Note Calc zones do not affect the scope of the variables in a notebook. Variables defined
in one calc zone are accessible to all calc zones.

Creating a Calc Zone

1 Select the input cells and text you want to include in the calc zone.

22 Presenting MATLAB Code

22-48

2 Select Define Calc Zone under the Notebook drop-down list.

A calc zone cannot begin or end in a cell.

Evaluating a Calc Zone

1 Position the cursor anywhere in the calc zone.
2 Select Evaluate Calc Zone from the Notebook drop-down list or press Alt+Enter.

By default, the output cell appears immediately after the calc zone the first time you
evaluate the calc zone. If you evaluate a calc zone with an existing output cell, the results
appear in the output cell wherever it is located in the MATLAB Notebook.

Formatting a MATLAB Notebook

• “Modifying Styles in the MATLAB Notebook Template” on page 22-48
• “Controlling the Format of Numeric Output” on page 22-49
• “Controlling Graphic Output” on page 22-49

Modifying Styles in the MATLAB Notebook Template

You can control the appearance of the text in your MATLAB Notebook by modifying
the predefined styles in the notebook template, m-book.dot. These styles control the
appearance of text and cells.

This table describes MATLAB Notebook default styles. For general information about
using styles in Microsoft Word documents, see the Microsoft Word documentation.

Style Font Size Weight Color

Normal Times New
Roman®

10 points N/A Black

AutoInit Courier New 10 points Bold Dark blue
Error Courier New 10 points Bold Red
Input Courier New 10 points Bold Dark green
Output Courier New 10 points N/A Blue

When you change a style, Word applies the change to all characters in the notebook
that use that style and gives you the option to change the template. Be cautious about

 Create a MATLAB Notebook with Microsoft Word

22-49

changing the template. If you choose to apply the changes to the template, you affect all
new notebooks that you create using the template. See the Word documentation for more
information.

Controlling the Format of Numeric Output

To change how numeric output displays, select Notebook Options from the Notebook
drop-down list. The Notebook Options dialog box opens, containing the Numeric format
pane.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

You can select a format from the Format list. Format choices correspond to the same
options available with the MATLAB format command.

The Loose and Compact settings control whether a blank line appears between the
input and output cells. To suppress this blank line, select Compact.

Controlling Graphic Output

MATLAB allows you to embed graphics, suppress graphic output and adjust the graphic
size.

By default, MATLAB embeds graphic output in a Notebook. To display graphic output in
a separate figure window, click Notebook Options from the Notebook drop-down list.
The Notebook Options dialog box opens, containing the Figure options pane.

22 Presenting MATLAB Code

22-50

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

From this pane, you can choose whether to embed figures in the MATLAB Notebook. You
can adjust the height and width of the figure in inches, centimeters, or points.

Note Embedded figures do not include Handle Graphics® objects generated by the
uicontrol and uimenu functions.

To prevent an input cell from producing a figure, select Toggle Graph Output for Cell
from the Notebook drop-down list. The string (no graph) appears after the input cell
and the input cell does not produce a graph if evaluated. To undo the figure suppression,
select Toggle Graph Output for Cell again or delete the text (no graph).

Note Toggle Graph Output for Cell overrides the Embed figures in MATLAB
Notebook option, if that option is set.

Tips for Using MATLAB Notebooks

Protecting the Integrity of Your Workspace in MATLAB Notebooks

If you work on more than one MATLAB Notebook in a single word-processing session,
notice that

• Each notebook uses the same MATLAB executable.
• All notebooks share the same workspace. If you use the same variable names in more

than one notebook, data used in one notebook can be affected by another notebook.

 Create a MATLAB Notebook with Microsoft Word

22-51

Note: You can protect the integrity of your workspace by specifying the clear command
as the first autoinit cell in the notebook.

Ensuring Data Consistency in MATLAB Notebooks

You can think of a MATLAB Notebook as a sequential record of a MATLAB session.
When executed in sequential order, the notebook accurately reflects the relationships
among the commands.

If, however, you edit input cells or output cells as you refine your notebook, it can contain
inconsistent data. Input cells that depend on the contents or the results of other cells do
not automatically recalculate when you make a change.

When working in a notebook, consider selecting Evaluate MATLAB Notebook
periodically to ensure that your notebook data is consistent. You can also use calc zones
to isolate related commands in a section of the notebook, and then use Evaluate Calc
Zone to execute only those input cells contained in the calc zone.

Debugging and MATLAB Notebooks

Do not use debugging functions or the Editor while evaluating cells within a MATLAB
Notebook. Instead, use this procedure:

1 Complete debugging files from within MATLAB.
2 Clear all the breakpoints.
3 Access the file using notebook.

If you debug while evaluating a notebook, you can experience problems with MATLAB.

Configuring the MATLAB Notebook Software

After you install MATLAB Notebook software, but before you begin using it, specify
that Word can use macros, and then configure the notebook command. The notebook
function installs as part of the MATLAB installation process on Microsoft Windows
platforms. For more information, see the MATLAB installation documentation.

Note: Word explicitly asks whether you want to enable macros. If it does not, refer to the
Word help. You can search topics relating to macros, such as “enable or disable macros”.

22 Presenting MATLAB Code

22-52

To configure MATLAB Notebook software, type the following in the MATLAB Command
Window:

notebook -setup

MATLAB configures the Notebook software and issues these messages in the Command
Window:

Welcome to the utility for setting up the MATLAB Notebook

for interfacing MATLAB to Microsoft Word

Setup complete

When MATLAB configures the software, it:

1 Accesses the Microsoft Windows system registry to locate Microsoft Word and the
Word templates folder. It also identifies the version of Word.

2 Copies the m-book.dot template to the Word templates folder.

The MATLAB Notebook software supports Word versions 2002, 2003, 2007, and 2010.

After you configure the software, typing notebook in the MATLAB Command Window
starts Microsoft Word and creates a new MATLAB Notebook.

If you suspect a problem with the current configuration, you can explicitly reconfigure
the software by typing:

notebook -setup

More About
• “Options for Presenting Your Code” on page 22-2
• “Publishing MATLAB Code” on page 22-4

23

Coding and Productivity Tips

• “Open and Save Files” on page 23-2
• “Check Code for Errors and Warnings” on page 23-6
• “Improve Code Readability” on page 23-21
• “Find and Replace Text in Files” on page 23-28
• “Go To Location in File” on page 23-33
• “Display Two Parts of a File Simultaneously” on page 23-38
• “Add Reminders to Files” on page 23-41
• “MATLAB Code Analyzer Report” on page 23-44

23 Coding and Productivity Tips

23-2

Open and Save Files

In this section...

“Open Existing Files” on page 23-2
“Save Files” on page 23-3

Open Existing Files

To open an existing file or files in the Editor, choose the option that achieves your goals,
as described in this table.

Goal Steps Additional Information

Open with associated
tool

Open a file using the
appropriate MATLAB tool
for the file type.

On the Editor, Live Editor, or Home

tab, in the File section, click .

For example, this option
opens a file with a .m or .mlx
extension in the Editor and
loads a MAT-file into the
Workspace browser.

Open as text file

Open a file in the Editor
as a text file, even if the
file type is associated with
another application or
tool.

On the Editor tab, in the File section,
click Open , and select Open as Text.

This is useful, for example,
if you have imported a tab-
delimited data file (.dat)
into the workspace and you
find you want to add a data
point. Open the file as text
in the Editor, make your
addition, and then save the
file.

Open function from
within file

Open a local function or
function file from within a
file in the Editor.

Position the cursor on the name within
the open file, and then right-click and
select Open file-name from the
context menu.

You also can use this
method to open a variable or
Simulink model.

For details, see “Open a File
or Variable from Within a
File” on page 23-37.

Reopen file At the bottom of the Open drop-down
list, select a file under Recent Files.

To change the number
of files on the list, click

 Open and Save Files

23-3

Goal Steps Additional Information

Reopen a recently used
file. Preferences, and

then select MATLAB and
Editor/Debugger. Under
Most recently used file
list, change the value for
Number of entries.

Reopen files at startup

At startup, automatically
open the files that were
open when the previous
MATLAB session ended.

On the Home tab, in the

Environment section, click
Preferences and select MATLAB and
Editor/Debugger. Then, select On
restart reopen files from previous
MATLAB session.

None.

Open file displaying in
another tool

Open a file name
displaying in another
MATLAB desktop tool or
Microsoft tool.

Drag the file from the other tool into
the Editor.

For example, drag files from
the Current Folder browser
or from Windows Explorer.

Open file using a
function

Use the edit or open function. For example, type the
following to open collatz.m:

edit collatz.m

If collatz.m is not on the
search path or in the current
folder, use the relative or
absolute path for the file.

For special considerations on the Macintosh platform, see “Navigating Within the
MATLAB Root Folder on Macintosh Platforms”.

Save Files

After you modify a file in the Editor, an asterisk (*) follows the file name. This asterisk
indicates that there are unsaved changes to the file.

23 Coding and Productivity Tips

23-4

You can perform four different types of save operations, which have various effects, as
described in this table.

Save Option Steps

Save file to disk and keep file open in the
Editor.

On the Editor or Live Editor tab, in the

File section, click .
Rename file, save it to disk, and make it
the active Editor document. Original file
remains unchanged on disk.

1 On the Editor or Live Editor tab, in the
File section, click Save and select Save
As.

2 Specify a new name, type, or both for the
file, and then click Save.

Save file to disk under new name.
Original file remains open and unsaved.

1 On the Editor tab, in the File section,
click Save and select Save Copy As.

MATLAB opens the Select File for
Backup dialog box.

2 Specify a name and type for the backup
file, and then click Save.

Save changes to all open files using
current file names.

All files remain open.

1 On the Editor tab, in the File section,
click Save and select Save All.

MATLAB opens the Select File for Save
As dialog box for the first unnamed file.

2 Specify a name and type for any unnamed
file, and then click Save.

3 Repeat step 2 until all unnamed files are
saved.

Recommendations on Saving Files

MathWorks recommends that you save files you create and files from MathWorks
that you edit to a folder that is not in the matlabroot/toolbox folder tree, where
matlabroot is the folder returned when you type matlabroot in the Command
Window. If you keep your files in matlabroot/toolbox folders, they can be overwritten
when you install a new version of MATLAB software.

At the beginning of each MATLAB session, MATLAB loads and caches in memory the
locations of files in the matlabroot/toolbox folder tree. Therefore, if you:

 Open and Save Files

23-5

• Save files to matlabroot/toolbox folders using an external editor, run rehash
toolbox before you use the files in the current session.

• Add or remove files from matlabroot/toolbox folders using file system operations,
run rehash toolbox before you use the files in the current session.

• Modify existing files in matlabroot/toolbox folders using an external editor, run
clear function-name before you use these files in the current session.

For more information, see rehash or “Toolbox Path Caching in MATLAB”.

Backing Up Files

When you modify a file in the Editor, the Editor saves a copy of the file using the same
file name but with an .asv extension every 5 minutes. The backup version is useful if
you have system problems and lose changes you made to your file. In that event, you can
open the backup version, filename.asv, and then save it as filename.m to use the last
good version of filename.

Note: The Editor does not save backup copies of live scripts.

To select preferences, click Preferences, and then select MATLAB > Editor/
Debugger > Backup Files on the Home tab, in the Environment section. You can
then:

• Turn the backup feature on or off.
• Automatically delete backup files when you close the corresponding source file.

By default, MATLAB automatically deletes backup files when you close the Editor.
It is best to keep backup-to-file relationships clear and current. Therefore, when you
rename or remove a file, consider deleting or renaming the corresponding backup file.

• Specify the number of minutes between backup saves.
• Specify the file extension for backup files.
• Specify a location for backup files

If you edit a file in a read-only folder and the back up Location preference is Source
file directories, then the Editor does not create a backup copy of the file.

23 Coding and Productivity Tips

23-6

Check Code for Errors and Warnings

MATLAB Code Analyzer can automatically check your code for coding problems.

In this section...

“Automatically Check Code in the Editor — Code Analyzer” on page 23-6
“Create a Code Analyzer Message Report” on page 23-11
“Adjust Code Analyzer Message Indicators and Messages” on page 23-12
“Understand Code Containing Suppressed Messages” on page 23-15
“Understand the Limitations of Code Analysis” on page 23-17
“Enable MATLAB Compiler Deployment Messages” on page 23-20

Automatically Check Code in the Editor — Code Analyzer

You can view warning and error messages about your code, and modify your file based
on the messages. The messages update automatically and continuously so you can
see if your changes addressed the issues noted in the messages. Some messages offer
additional information, automatic code correction, or both.

Enable Continuous Code Checking

To enable continuous code checking in a MATLAB code file in the Editor:

1
On the Home tab, in the Environment section, click Preferences.

2 Select MATLAB > Code Analyzer, and then select the Enable integrated
warning and error messages check box.

3 Set the Underlining option to Underline warnings and errors, and then click
OK.

Note: Preference changes do not apply in live scripts. Continuous code checking is always
enabled.

Use Continuous Code Checking

You can use continuous code checking in MATLAB code files in the Editor:

 Check Code for Errors and Warnings

23-7

1 Open a MATLAB code file in the Editor. This example uses the sample file
lengthofline.m that ships with the MATLAB software:

a Open the example file:

open(fullfile(matlabroot,'help','techdoc','matlab_env',...

 'examples','lengthofline.m'))

b Save the example file to a folder to which you have write access. For the
example, lengthofline.m is saved to C:\my_MATLAB_files.

2 Examine the message indicator at the top of the message bar to see the Code
Analyzer messages reported for the file:

• Red indicates that syntax errors were detected. Another way to detect some of
these errors is using syntax highlighting to identify unterminated strings, and
delimiter matching to identify unmatched keywords, parentheses, braces, and
brackets.

• Orange indicates warnings or opportunities for improvement, but no errors, were
detected.

• Green indicates no errors, warnings, or opportunities for improvement were
detected.

In this example, the indicator is red, meaning that there is at least one error in the
file.

23 Coding and Productivity Tips

23-8

3 Click the message indicator to go to the next code fragment containing a message.
The next code fragment is relative to the current cursor position, viewable in the
status bar.

In the lengthofline example, the first message is at line 22. The cursor moves to
the beginning of line 22.

The code fragment for which there is a message is underlined in either red for errors
or orange for warnings and improvement opportunities.

4 View the message by moving the mouse pointer within the underlined code
fragment.

The message opens in a tooltip and contains a Details button that provides access to
additional information by extending the message. Not all messages have additional
information.

5 Click the Details button.

The window expands to display an explanation and user action.
6 Modify your code, if needed.

The message indicator and underlining automatically update to reflect changes you
make, even if you do not save the file.

7 On line 28, hover over prod.

The code is underlined because there is a warning message, and it is highlighted
because an automatic fix is available. When you view the message, it provides a
button to apply the automatic fix.

 Check Code for Errors and Warnings

23-9

8 Fix the problem by doing one of the following:

• If you know what the fix is (from previous experience), click Fix.
• If you are unfamiliar with the fix, view, and then apply it as follows:

a Right-click the highlighted code (for a single-button mouse, press Ctrl+
click), and then view the first item in the context menu.

b Click the fix.

MATLAB automatically corrects the code.

In this example, MATLAB replaces prod(size(hline)) with
numel(hline).

9 Go to a different message by doing one of the following:

• To go to the next message, click the message indicator or the next underlined code
fragment.

• To go to a line that a marker represents, click a red or orange line in the indicator
bar.

To see the first error in lengthofline, click the first red marker in the message
bar. The cursor moves to the first suspect code fragment in line 48. The Details
and Fix buttons are dimmed, indicating that there is no more information about
this message and there is no automatic fix.

23 Coding and Productivity Tips

23-10

Multiple messages can represent a single problem or multiple problems.
Addressing one might address all of them, or after addressing one, the other
messages might change or what you need to do might become clearer.

10 Modify the code to address the problem noted in the message—the message
indicators update automatically.

The message suggests a delimiter imbalance on line 48. You can investigate that as
follows:

a
On the Home tab, in the Environment section, click Preferences.

b Select MATLAB > Keyboard.
c Under Delimiter Matching, select Match on arrow key, and then click OK.
d In the Editor, move the arrow key over each of the delimiters to see if MATLAB

indicates a mismatch.

In the example, it might appear that there are no mismatched delimiters.
However, code analysis detects the semicolon in parentheses: data{3}(;),
and interprets it as the end of a statement. The message reports that the two
statements on line 48 each have a delimiter imbalance.

e In line 48, change data{3}(;) to data{3}(:).

Now, the underline no longer appears in line 48. The single change addresses
the issues in both of the messages for line 48.

 Check Code for Errors and Warnings

23-11

Because the change removed the only error in the file, the message indicator at
the top of the bar changes from red to orange, indicating that only warnings and
potential improvements remain.

After modifying the code to address all the messages, or disabling designated messages,
the message indicator becomes green. The example file with all messages addressed has
been saved as lengthofline2.m. Open the corrected example file with the command:

open(fullfile(matlabroot,'help','techdoc',...

 'matlab_env', 'examples','lengthofline2.m'))

Note: MATLAB does not support all Code Analyzer features in lives scripts. Supported
features include code underlining to indicate a warning or error, code highlighting
to depict when an automatic fix is available, and the automatic fix button. The Code
Analyzer message indicator, message bar, and Details button are not supported.

Create a Code Analyzer Message Report

You can create a report of messages for an individual file, or for all files in a folder using
one of these methods:

• Run a report for an individual MATLAB code file:

1 On the Editor window, click .
2 Select Show Code Analyzer Report.

A Code Analyzer Report appears in the MATLAB Web Browser.
3 Modify your file based on the messages in the report.
4 Save the file.
5 Rerun the report to see if your changes addressed the issues noted in the

messages.
• Run a report for all files in a folder:

1 On the Current Folder browser, click .
2 Select Reports > Code Analyzer Report.
3 Modify your files based on the messages in the report.

23 Coding and Productivity Tips

23-12

For details, see “MATLAB Code Analyzer Report” on page 23-44.
4 Save the modified file(s).
5 Rerun the report to see if your changes addressed the issues noted in the

messages.

Note: MATLAB does not support creating Code Analyzer reports for live scripts. When
creating a report for all files in a folder, all live scripts in the selected folder are excluded
from the report.

Adjust Code Analyzer Message Indicators and Messages

Depending on the stage at which you are in completing a MATLAB file, you might want
to restrict the code underlining. You can do this by using the Code Analyzer preference
referred to in step 1, in “Check Code for Errors and Warnings” on page 23-6. For
example, when first coding, you might prefer to underline only errors because warnings
would be distracting.

Code analysis does not provide perfect information about every situation and sometimes,
you might not want to change the code based on a message. If you do not want to change
the code, and you do not want to see the indicator and message for that line, suppress
them. For the lengthofline example, in line 49, the first message is Terminate
statement with semicolon to suppress output (in functions). Adding a
semicolon to the end of a statement suppresses output and is a common practice. Code
analysis alerts you to lines that produce output, but lack the terminating semicolon. If
you want to view output from line 49, do not add the semicolon as the message suggests.

There are a few different ways to suppress (turn off) the indicators for warning and error
messages:

• “Suppress an Instance of a Message in the Current File” on page 23-13
• “Suppress All Instances of a Message in the Current File” on page 23-13
• “Suppress All Instances of a Message in All Files” on page 23-14
• “Save and Reuse Code Analyzer Message Settings” on page 23-14

You cannot suppress error messages such as syntax errors. Therefore, instructions on
suppressing messages do not apply to those types of messages.

 Check Code for Errors and Warnings

23-13

Note: Code Analyzer Message preference changes do not apply in live scripts. All Code
Analyzer messages are always enabled.

Suppress an Instance of a Message in the Current File

You can suppress a specific instance of a Code Analyzer message in the current file. For
example, using the code presented in “Check Code for Errors and Warnings” on page
23-6 , follow these steps:

1 In line 49, right-click at the first underline (for a single-button mouse, press
Ctrl+click).

2 From the context menu, select Suppress 'Terminate statement with
semicolon...' > On This Line.

The comment %#ok<NOPRT> appears at the end of the line, which instructs MATLAB
not to check for a terminating semicolon at that line. The underline and mark in the
indicator bar for that message disappear.

3 If there are two messages on a line that you do not want to display, right-click
separately at each underline and select the appropriate entry from the context menu.

The %#ok syntax expands. For the example, in the code presented in “Check Code
for Errors and Warnings” on page 23-6, ignoring both messages for line 49 adds
%#ok<NBRAK,NOPRT>.

Even if Code Analyzer preferences are set to enable this message, the specific
instance of the message suppressed in this way does not appear because the %#ok
takes precedence over the preference setting. If you later decide you want to check
for a terminating semicolon at that line, delete the %#ok<NOPRT> string from the
line.

Suppress All Instances of a Message in the Current File

You can suppress all instances of a specific Code Analyzer message in the current file.
For example, using the code presented in “Check Code for Errors and Warnings” on page
23-6, follow these steps:

1 In line 49, right-click at the first underline (for a single-button mouse, press
Ctrl+click).

2 From the context menu, select Suppress 'Terminate statement with
semicolon...' > In This File.

23 Coding and Productivity Tips

23-14

The comment %#ok<*NOPRT> appears at the end of the line, which instructs MATLAB
not to check for a terminating semicolon throughout the file. All underlines and marks in
the message indicator bar that correspond to this message disappear.

If there are two messages on a line that you do not want to display anywhere in the
current file, right-click separately at each underline, and then select the appropriate
entry from the context menu. The %#ok syntax expands. For the example, in the code
presented in “Check Code for Errors and Warnings” on page 23-6, ignoring both
messages for line 49 adds %#ok<*NBRAK,*NOPRT>.

Even if Code Analyzer preferences are set to enable this message, the message does not
appear because the %#ok takes precedence over the preference setting. If you later decide
you want to check for a terminating semicolon in the file, delete the %#ok<*NOPRT>
string from the line.

Suppress All Instances of a Message in All Files

You can disable all instances of a Code Analyzer message in all files. For example, using
the code presented in “Check Code for Errors and Warnings” on page 23-6, follow
these steps:

1 In line 49, right-click at the first underline (for a single-button mouse, press
Ctrl+click).

2 From the context menu, select Suppress 'Terminate statement with
semicolon...' > In All Files.

This modifies the Code Analyzer preference setting.

If you know which message or messages you want to suppress, you can disable them
directly using Code Analyzer preferences, as follows:

1
On the Home tab, in the Environment section, click Preferences.

2 Select MATLAB > Code Analyzer.
3 Search the messages to find the ones you want to suppress.
4 Clear the check box associated with each message you want to suppress in all files.
5 Click OK.

Save and Reuse Code Analyzer Message Settings

You can specify that you want certain Code Analyzer messages enabled or disabled, and
then save those settings to a file. When you want to use a settings file with a particular

 Check Code for Errors and Warnings

23-15

file, you select it from the Code Analyzer preferences pane. That setting file remains in
effect until you select another settings file. Typically, you change the settings file when
you have a subset of files for which you want to use a particular settings file.

Follow these steps:

1
On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Code Analyzer.
3 Enable or disable specific messages, or categories of messages.
4 Click the Actions button , select Save as, and then save the settings to a txt

file.
5 Click OK.

You can reuse these settings for any MATLAB file, or provide the settings file to another
user.

To use the saved settings:

1
On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Code Analyzer.
3 Use the Active Settings drop-down list to select Browse....

The Open dialog box appears.
4 Choose from any of your settings files.

The settings you choose are in effect for all MATLAB files until you select another
set of Code Analyzer settings.

Understand Code Containing Suppressed Messages

If you receive code that contains suppressed messages, you might want to review those
messages without the need to unsuppress them first. A message might be in a suppressed
state for any of the following reasons:

23 Coding and Productivity Tips

23-16

• One or more %#ok<message-ID> directives are on a line of code that elicits a
message specified by <message-ID>.

• One or more %#ok<*message-ID> directives are in a file that elicits a message
specified by <message-ID>.

• It is cleared in the Code Analyzer preferences pane.
• It is disabled by default.

To determine the reasons why some messages are suppressed:

1 Search the file for the %#ok directive and create a list of all the message IDs
associated with that directive.

2
On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
3 Select MATLAB > Code Analyzer.
4 In the search field, type msgid: followed by one of the message IDs, if any, you

found in step 1.

The message list now contains only the message that corresponds to that ID. If the
message is a hyperlink, click it to see an explanation and suggested action for the
message. This can provide insight into why the message is suppressed or disabled.
The following image shows how the Preferences dialog box appears when you enter
msgid:CPROP in the search field.

 Check Code for Errors and Warnings

23-17

5 Click the button to clear the search field, and then repeat step 4 for each message
ID you found in step 1.

6 Display messages that are disabled by default and disabled in the Preferences
pane by clicking the down arrow to the right of the search field. Then, click Show
Disabled Messages.

7 Review the message associated with each message ID to understand why it is
suppressed in the code or disabled in Preferences.

Understand the Limitations of Code Analysis

Code analysis is a valuable tool, but there are some limitations:

• Sometimes, it fails to produce Code Analyzer messages where you expect them.

By design, code analysis attempts to minimize the number of incorrect messages it
returns, even if this behavior allows some issues to go undetected.

• Sometimes, it produces messages that do not apply to your situation.

When provided with message, click the Detail button for additional information,
which can help you to make this determination. Error messages are almost always
problems. However, many warnings are suggestions to look at something in the code
that is unusual and therefore suspect, but might be correct in your case.

Suppress a warning message if you are certain that the message does not apply to
your situation. If your reason for suppressing a message is subtle or obscure, include
a comment giving the rationale. That way, those who read your code are aware of the
situation.

For details, see “Adjust Code Analyzer Message Indicators and Messages” on page
23-12.

These sections describe code analysis limitations regarding the following:

• “Distinguish Function Names from Variable Names” on page 23-18
• “Distinguish Structures from Handle Objects” on page 23-18
• “Distinguish Built-In Functions from Overloaded Functions” on page 23-19
• “Determine the Size or Shape of Variables” on page 23-19
• “Analyze Class Definitions with Superclasses” on page 23-19

23 Coding and Productivity Tips

23-18

• “Analyze Class Methods” on page 23-19

Distinguish Function Names from Variable Names

Code analysis cannot always distinguish function names from variable names. For
the following code, if the Code Analyzer message is enabled, code analysis returns the
message, Code Analyzer cannot determine whether xyz is a variable
or a function, and assumes it is a function. Code analysis cannot make a
determination because xyz has no obvious value assigned to it. However, the program
might have placed the value in the workspace in a way that code analysis cannot detect.

function y=foo(x)

 .

 .

 .

 y = xyz(x);

end

For example, in the following code, xyz can be a function, or can be a variable loaded
from the MAT-file. Code analysis has no way of making a determination.

function y=foo(x)

 load abc.mat

 y = xyz(x);

end

Variables might also be undetected by code analysis when you use the eval, evalc,
evalin, or assignin functions.

If code analysis mistakes a variable for a function, do one of the following:

• Initialize the variable so that code analysis does not treat it as a function.
• For the load function, specify the variable name explicitly in the load command line.

For example:

 function y=foo(x)

 load abc.mat xyz

 y = xyz(x);

 end

Distinguish Structures from Handle Objects

Code analysis cannot always distinguish structures from handle objects. In the following
code, if x is a structure, you might expect a Code Analyzer message indicating that the

 Check Code for Errors and Warnings

23-19

code never uses the updated value of the structure. If x is a handle object, however, then
this code can be correct.

function foo(x)

 x.a = 3;

end

Code analysis cannot determine whether x is a structure or a handle object. To minimize
the number of incorrect messages, code analysis returns no message for the previous
code, even though it might contain a subtle and serious bug.

Distinguish Built-In Functions from Overloaded Functions

If some built-in functions are overloaded in a class or on the path, Code Analyzer
messages might apply to the built-in function, but not to the overloaded function you are
calling. In this case, suppress the message on the line where it appears or suppress it for
the entire file.

For information on suppressing messages, see “Adjust Code Analyzer Message Indicators
and Messages” on page 23-12.

Determine the Size or Shape of Variables

Code analysis has a limited ability to determine the type of variables and the shape
of matrices. Code analysis might produce messages that are appropriate for the most
common case, such as for vectors. However, these messages might be inappropriate for
less common cases, such as for matrices.

Analyze Class Definitions with Superclasses

Code Analyzer has limited capabilities to check class definitions with superclasses.
For example, Code Analyzer cannot always determine if the class is a handle class,
but it can sometimes validate custom attributes used in a class if the attributes are
inherited from a superclass. When analyzing class definitions, Code Analyzer tries to use
information from the superclasses but often cannot get enough information to make a
certain determination.

Analyze Class Methods

Most class methods must contain at least one argument that is an object of the same
class as the method. But it does not always have to be the first argument. When it is,
code analysis can determine that an argument is an object of the class you are defining,

23 Coding and Productivity Tips

23-20

and it can do various checks. For example, it can check that the property and method
names exist and are spelled correctly. However, when code analysis cannot determine
that an object is an argument of the class you are defining, then it cannot provide these
checks.

Enable MATLAB Compiler Deployment Messages

You can switch between showing or hiding Compiler deployment messages when you
work on a file. Change the Code Analyzer preference for this message category. Your
choice likely depends on whether you are working on a file to be deployed. When you
change the preference, it also changes the setting in the Editor. The converse is also true
—when you change the setting from the Editor, it effectively changes this preference.
However, if the dialog box is open at the time you modify the setting in the Editor, you
will not see the changes reflected in the Preferences dialog box. Whether you change the
setting from the Editor or from the Preferences dialog box, it applies to the Editor and to
the Code Analyzer Report.

To enable MATLAB Compiler™ deployment messages:

1
On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Code Analyzer.
3 Click the down arrow next to the search field, and then select Show Messages in

Category > MATLAB Compiler (Deployment) Messages.
4 Click the Enable Category button.
5 Clear individual messages that you do not want to display for your code (if any).
6 Decide if you want to save these settings, so you can reuse them next time you work

on a file to be deployed.

The settings txt file, which you can create as described in “Save and Reuse Code
Analyzer Message Settings” on page 23-14, includes the status of this setting.

 Improve Code Readability

23-21

Improve Code Readability

In this section...

“Indenting Code” on page 23-21
“Right-Side Text Limit Indicator” on page 23-23
“Code Folding — Expand and Collapse Code Constructs” on page 23-23

Indenting Code

Indenting code makes reading statements such as while loops easier. To set and apply
indenting preferences to code in the Editor:

1
On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Editor/Debugger > Language.
3 Choose a computer language from the Language drop-down list.
4 In the Indenting section, select or clear Apply smart indenting while typing,

depending on whether you want indenting applied automatically, as you type.

If you clear this option, you can manually apply indenting by selecting the lines
in the Editor to indent, right-clicking, and then selecting Smart Indent from the
context menu.

5 Do one of the following:

• If you chose any language other than MATLAB in step 2, click OK.
• If you chose MATLAB in step 2, select a Function indenting format, and then

click OK. Function indent formats are:

• Classic — The Editor aligns the function code with the function declaration.
• Indent nested functions — The Editor indents the function code within

a nested function.
• Indent all functions — The Editor indents the function code for both

main and nested functions.

This image illustrates the function indenting formats.

23 Coding and Productivity Tips

23-22

Note: Indenting preferences are not supported for MATLAB live scripts, TLC, VHDL, or
Verilog.

Regardless of whether you apply indenting automatically or manually, you can move
selected lines further to the left or right, by doing one of the following:

•
On the Editor tab, in the Edit section, click , , or . In live scripts, this
functionality is available on the Live Editor tab, in the Format section.

• Pressing the Tab key or the Shift+Tab key, respectively.

This works differently if you select the Editor/Debugger Tab preference for Emacs-
style Tab key smart indenting—when you position the cursor in any line or
select a group of lines and press Tab, the lines indent according to smart indenting
practices.

 Improve Code Readability

23-23

Right-Side Text Limit Indicator

By default, a light gray vertical line (rule) appears at column 75 in the Editor, indicating
where a line exceeds 75 characters. You can set this text limit indicator to another value,
which is useful, for example, if you want to view the code in another text editor that has
a different line width limit. The right-side text limit indicator is not supported in live
scripts.

To hide, or change the appearance of the vertical line:

1
On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Editor/Debugger > Display.
3 Adjust the settings in the Right-hand text limit section.

Note: This limit is a visual cue only and does not prevent text from exceeding the limit.
To wrap comment text at a specified column number automatically, adjust the settings in
the Comment formatting section under MATLAB > Editor/Debugger > Language
in the Preferences dialog box.

Code Folding — Expand and Collapse Code Constructs

Code folding is the ability to expand and collapse certain MATLAB programming
constructs. This improves readability when a file contains numerous functions or other
blocks of code that you want to hide when you are not currently working with that part of
the file. MATLAB programming constructs include:

• Code sections for running and publishing code
• Class code
• For and parfor blocks
• Function and class help
• Function code

To see the entire list of constructs, select Editor/Debugger > Code Folding in the
Preferences dialog box.

23 Coding and Productivity Tips

23-24

To expand or collapse code, click the plus or minus sign that appears to the left of
the construct in the Editor.

To expand or collapse all of the code in a file, place your cursor anywhere within the file,
right-click, and then select Code Folding > Expand All or Code Folding > Fold All
from the context menu.

Note: Code folding is not supported in live scripts.

View Folded Code in a Tooltip

You can view code that is currently folded by positioning the pointer over its ellipsis .
The code appears in a tooltip.

The following image shows the tooltip that appears when you place the pointer over the
ellipsis on line 23 of lenghtofline.m when a for loop is folded.

Print Files with Collapsed Code

If you print a file with one or more collapsed constructs, those constructs are expanded in
the printed version of the file.

Code Folding Behavior for Functions that Have No Explicit End Statement

If you enable code folding for functions and a function in your code does not end with an
explicit end statement, you see the following behavior:

• If a line containing only comments appears at the end of such a function, then the
Editor does not include that line when folding the function. MATLAB does not include

 Improve Code Readability

23-25

trailing white space and comments in a function definition that has no explicit end
statement.

Code Folding Enabled for Function Code Only illustrates this behavior. Line 13 is
excluded from the fold for the foo function.

• If a fold for a code section overlaps the function code, then the Editor does not show
the fold for the overlapping section.

The three figures that follow illustrate this behavior. The first two figures, Code
Folding Enabled for Function Code Only and Code Folding Enabled for Cells Only
illustrate how the code folding appears when you enable it for function code only
and then section only, respectively. The last figure, Code Folding Enabled for Both
Functions and Cells, illustrates the effects when code folding is enabled for both.
Because the fold for section 3 (lines 11–13) overlaps the fold for function foo (lines 4–
12), the Editor does not display the fold for section 3.

Code Folding Enabled for Function Code Only

23 Coding and Productivity Tips

23-26

Code Folding Enabled for Cells Only

 Improve Code Readability

23-27

Code Folding Enabled for Both Functions and Cells

23 Coding and Productivity Tips

23-28

Find and Replace Text in Files

In this section...

“Find Any Text in the Current File” on page 23-28
“Find and Replace Functions or Variables in the Current File” on page 23-28
“Automatically Rename All Functions or Variables in a File” on page 23-30
“Find and Replace Any Text” on page 23-32
“Find Text in Multiple File Names or Files” on page 23-32
“Function Alternative for Finding Text” on page 23-32
“Perform an Incremental Search in the Editor” on page 23-32

Find Any Text in the Current File

You can search for text in your files using the Find & Replace tool.

1 Within the current file, select the text you want to find.
2

On the Editor or Live Editor tab, in the Navigate section, click Find , and
then select Find....

A Find & Replace dialog box opens.
3 Click Find Next to continue finding more occurrences of the text.

To find the previous occurrence of selected text (find backwards) in the current file, click
Find Previous on the Find & Replace dialog box.

Find and Replace Functions or Variables in the Current File

To search for references to a particular function or variable, use the automatic
highlighting feature for variables and functions. This feature is more efficient than
using the text finding tools. Function and variable highlighting indicates only references
to a particular function or variable, not other occurrences. For instance, it does not
find instances of the function or variable name in comments. Furthermore, variable
highlighting only includes references to the same variable. That is, if two variables use
the same name, but are in different “Share Data Between Workspaces” on page 19-10,
highlighting one does not cause the other to highlight.

 Find and Replace Text in Files

23-29

To enable automatic highlighting:

1
On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Colors > Programming Tools.
3 Under Variable and function colors, select Automatically highlight, deselect

Variables with shared scope, and then click Apply.
4 In a file open in the Editor, click an instance of the variable you want to find

throughout the file.

MATLAB indicates all occurrences of that variable within the file by:

• Highlighting them in teal blue (by default) throughout the file
• Adding a marker for each in the indicator bar

If a code analyzer indicator and a variable indicator appear on the same line in a
file, the marker for the variable takes precedence.

5 Hover over a marker in the indicator bar to see the line it represents.
6 Click a marker in the indicator bar to navigate to that occurrence of the variable.

Replace an instance of a function or variable by editing the occurrence at a line to
which you have navigated.

The following image shows an example of how the Editor looks with variable highlighting
enabled. In this image, the variable i appears highlighted in sky blue, and the indicator
bar contains three variable markers.

23 Coding and Productivity Tips

23-30

Note: Markers in the indicator bar are not visible in live scripts.

Automatically Rename All Functions or Variables in a File

To help prevent typographical errors, MATLAB provides a feature that helps rename
multiple references to a function or variable within a file when you manually change any
of the following:

Function or Variable Renamed Example

Function name in a function declaration Rename foo in:

function foo(m)

Input or output variable name in a function
declaration

Rename y or m in:

function y = foo(m)

Variable name on the left side of
assignment statement

Rename y in:

y = 1

 Find and Replace Text in Files

23-31

Note: Automatic renaming is not supported in live scripts.

As you rename such a function or variable, a tooltip opens if there is more than one
reference to that variable or function in the file. The tooltip indicates that MATLAB will
rename all instances of the function or variable in the file when you press Shift + Enter.

Typically, multiple references to a function appear when you use nested functions or local
functions.

Note: MATLAB does not prompt you when you change:

• The name of a global variable.

• The function input and output arguments, varargin and varargout.

To undo automatic name changes, click once.

By default, this feature is enabled. To disable it:

23 Coding and Productivity Tips

23-32

1
On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.
2 Select MATLAB > Editor/Debugger > Language.
3 In the Language field, select MATLAB.
4 Clear Enable automatic variable and function renaming.

Find and Replace Any Text

You can search for, and optionally replace specified text within a file. On the Editor or

Live Editor tab, in the Navigate section, click Find to open and use the Find &
Replace dialog box.

Find Text in Multiple File Names or Files

You can find folders and file names that include specified text, or whose contents contain

specified text. On the Editor or Live Editor tab, in the File section, click Find
Files to open the Find Files dialog box. For details, see “Find Files and Folders”.

Function Alternative for Finding Text

Use lookfor to search for the specified text in the first line of help for all files with the
.m extension on the search path.

Perform an Incremental Search in the Editor

When you perform an incremental search, the cursor moves to the next or previous
occurrence of the specified text in the current file. It is similar to the Emacs search
feature. In the Editor, incremental search uses the same controls as incremental
search in the Command Window. For details, see “Incremental Search Using Keyboard
Shortcuts”.

 Go To Location in File

23-33

Go To Location in File

In this section...

“Navigate to a Specific Location” on page 23-33
“Set Bookmarks” on page 23-35
“Navigate Backward and Forward in Files” on page 23-36
“Open a File or Variable from Within a File” on page 23-37

Navigate to a Specific Location

This table summarizes the steps for navigating to a specific location within a file open
in the Editor. In some cases, different sets of steps are available for navigating to a
particular location. Choose the set that works best with your workflow.

Go To Steps Notes

Line Number 1 On the Editor or Live Editor
tab, in the Navigate section, click

 Go To
2 Select Go to Line...
3 Specify the line to which you want

to navigate.

None

1 On the Editor tab, in the

Navigate section, click Go To
.

2 Under the heading Function,
select the local function or nested
function to which you want to
navigate.

Includes local functions and nested
functions

For both class and function files, the
functions list in alphabetical order—
except that in function files, the name
of the main function always appears at
the top of the list.

Not supported in live scripts.

Function
definition

1 In the Current Folder browser,
click the name of the file open in
the Editor.

Functions list in order of appearance
within your file.

Not supported in live scripts.

23 Coding and Productivity Tips

23-34

Go To Steps Notes

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-

click the function icon
corresponding to the title of the
function or local function to which
you want to navigate.

1 On the Editor tab, in the

Navigate section, click Go To
.

2 Under Sections, select the title of
the code section to which you want
to navigate.

Code Section
1 In the Current Folder browser,

click the name of the file that is
open in the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-click

the section icon corresponding
to the title of the section to which
you want to navigate.

For more information, see “Divide
Your File into Code Sections” on page
17-6

Not supported in live scripts.

 Go To Location in File

23-35

Go To Steps Notes

Property 1 In the Current Folder browser,
click the name of the file that is
open in the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 On the detail panel, double-

click the property icon
corresponding to the name of the
property to which you want to
navigate.

For more information, see “How to Use
Properties”

Not supported in live scripts.

Method 1 In the Current Folder browser,
click the name of the file that is
open in the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-click

the icon corresponding to the
name of the method to which you
want to navigate.

For more information, see “How to Use
Methods”

Not supported in live scripts.

Bookmark 1 On the Editor tab, in the

Navigate section, click Go To
.

2 Under Bookmarks, select the
bookmark to which you want to
navigate.

For information on setting and
clearing bookmarks, see “Set
Bookmarks” on page 23-35.

Not supported in live scripts.

Set Bookmarks

You can set a bookmark at any line in a file in the Editor so you can quickly navigate to
the bookmarked line. This is particularly useful in long files. For example, suppose while
working on a line, you want to look at another part of the file, and then return. Set a

23 Coding and Productivity Tips

23-36

bookmark at the current line, go to the other part of the file, and then use the bookmark
to return.

Bookmarks are not supported in live scripts.

To set a bookmark:

1 Position the cursor anywhere on the line.
2

On the Editor tab, in the Navigate section, click Go To .
3 Under Bookmarks, select Set/Clear

A bookmark icon appears to the left of the line.

To clear a bookmark, position the cursor anywhere on the line. Click Go To and
select Set/Clear under Bookmarks.

MATLAB does not maintain bookmarks after you close a file.

Navigate Backward and Forward in Files

To access lines in a file in the same sequence that you previously navigated or edited

them, use and .

Backward and forward navigation is not supported in live scripts.

Interrupting the Sequence of Go Back and Go Forward

The back and forward sequence is interrupted if you:

1
Click .

2
Click .

3 Edit a line or navigate to another line using the list of features described in
“Navigate to a Specific Location” on page 23-33.

You can still go to the lines preceding the interruption point in the sequence, but
you cannot go to any lines after that point. Any lines you edit or navigate to after
interrupting the sequence are added to the sequence after the interruption point.

 Go To Location in File

23-37

For example:

1 Open a file.
2 Edit line 2, line 4, and line 6.
3

Click to return to line 4, and then to return to line 2.
4

Click to return to lines 4 and 6.
5

Click to return to line 1.
6 Edit at 3.

This interrupts the sequence. You can no longer use to return to lines 4 and 6.

You can, however, click to return to line 1.

Open a File or Variable from Within a File

You can open a function, file, variable, or Simulink model from within a file in the Editor.
Position the cursor on the name, and then right-click and select Open selection from the
context menu. Based on what the selection is, the Editor performs a different action, as
described in this table.

Item Action

Local function Navigates to the local function within the current file, if that
file is a MATLAB code file. If no function by that name exists
in the current file, the Editor runs the open function on the
selection, which opens the selection in the appropriate tool.

Text file Opens in the Editor.
Figure file (.fig) Opens in a figure window.

Not supported in live scripts.
MATLAB variable
that is in the current
workspace

Opens in the Variables Editor.

Model Opens in Simulink.
Other If the selection is some other type, Open selection looks for

a matching file in a private folder in the current folder and
performs the appropriate action.

23 Coding and Productivity Tips

23-38

Display Two Parts of a File Simultaneously

You can simultaneously display two different parts of a file in the Editor by splitting the
screen display, as shown in the image that follows. This feature makes it easy to compare
different lines in a file or to copy and paste from one part of a file to another.

Displaying two parts of a file simultaneously is not supported in live scripts.

The following table describes the various ways you can split the Editor and manipulate
the split-screen views. When you open a document, it opens unsplit, regardless of its split
status it had when you closed it.

Operation Instructions

Split the screen
horizontally.

Do either of the following:

• Right-click and, select Split Screen > Top/Bottom from
the Context Menu.

• If there is a vertical scroll bar, as shown in the
illustration that follows, drag the splitter bar down.

Split the screen vertically. Do either of the following:

• From the Context Menu, select Split Screen > Left/
Right.

 Display Two Parts of a File Simultaneously

23-39

Operation Instructions

• If there is a horizontal scroll bar, as shown in the
illustration that follows, drag the splitter bar from the
left of the scroll bar.

Specify the active view. Do either of the following:

• From the Context Menu, select Split Screen > Switch
Focus.

• Click in the view you want to make active.

Updates you make to the document in the active view are
also visible in the other view.

Remove the splitter Do one of the following:

• Double-click the splitter.
• From the Context Menu, Split Screen > Off.

23 Coding and Productivity Tips

23-40

More About
• “Document Layout”

 Add Reminders to Files

23-41

Add Reminders to Files
Annotating a file makes it easier to find areas of your code that you intend to improve,
complete, or update later.

To annotate a file, add comments with the text TODO, FIXME, or a string of your choosing.

After you annotate several files, run the TODO/FIXME Report, to identify all the
MATLAB code files within a given folder that you have annotated.

This sample TODO/FIXME Report shows a file containing the strings TODO, FIXME,
and NOTE. The search is case insensitive.

Note: MATLAB does not support creating TODO/FIXME reports for live scripts. When
creating a report for all files in a folder, all live scripts in the selected folder are excluded
from the report.

Working with TODO/FIXME Reports

1 Use the Current Folder browser to navigate to the folder containing the files for
which you want to produce a TODO/FIXME report.

Note: You cannot run reports when the path is a UNC (Universal Naming
Convention) path; that is, a path that starts with \\. Instead, use an actual hard
drive on your system, or a mapped network drive.

2 On the Current Folder browser, click , and then select Reports > TODO/FIXME
Report.

23 Coding and Productivity Tips

23-42

The TODO/FIXME Report opens in the MATLAB Web Browser.
3 In the TODO/FIXME Report window, select one or more of the following to specify

the lines that you want the report to include:

• TODO

• FIXME

• The text field check box

You can then enter any text string in this field, including a “Regular Expressions”
on page 2-25. For example, you can enter NOTE, tbd, or re.*check.

4 Run the report on the files in the current folder, by clicking Rerun This Report.

The window refreshes and lists all lines in the MATLAB files within the specified
folder that contain the strings you selected in step 1. Matches are not case sensitive.

If you want to run the report on a folder other than the one currently specified in
the report window, change the current folder. Then, click Run Report on Current
Folder.

To open a file in the Editor at a specific line, click the line number in the report. Then
you can change the file, as needed.

Suppose you have a file, area.m, in the current folder. The code for area.m appears in
the image that follows.

 Add Reminders to Files

23-43

When you run the TODO/FIXME report on the folder containing area.m, with the TODO
and FIXME strings selected and the string NOTE specified and selected, the report lists:
9 and rectangle. (todo)
14 Fixme: Is the area of hemisphere as below?
17 fIXME
21 NOTE: Find out from the manager if we need to include

Notice the report includes the following:

• Line 9 as a match for the TODO string. The report includes lines that have a selected
string regardless of its placement within a comment.

• Lines 14 and 17 as a match for the FIXME string. The report matches selected strings
in the file regardless of their casing.

• Line 21 as a match for the NOTE string. The report includes lines that have a string
specified in the text field, assuming that you select the text field.

23 Coding and Productivity Tips

23-44

MATLAB Code Analyzer Report

In this section...

“Running the Code Analyzer Report” on page 23-44
“Changing Code Based on Code Analyzer Messages” on page 23-46
“Other Ways to Access Code Analyzer Messages” on page 23-47

Running the Code Analyzer Report

The Code Analyzer Report displays potential errors and problems, as well as
opportunities for improvement in your code through messages. For example, a common
message indicates that a variable foo might be unused.

Note: MATLAB does not support creating Code Analyzer reports for live scripts. When
creating a report for all files in a folder, all live scripts in the selected folder are excluded
from the report.

To run the Code Analyzer Report:

1 In the Current Folder browser, navigate to the folder that contains the files you want
to check. To use the example shown in this documentation, lengthofline.m, you
can change the current folder by running

cd(fullfile(matlabroot,'help','techdoc','matlab_env','examples'))

2 If you plan to modify the example, save the file to a folder for which you have write
access. Then, make that folder the current MATLAB folder. This example saves the
file in C:\my_MATLAB_files.

3 In the Current Folder browser, click , and then select Reports > Code Analyzer
Report.

The report displays in the MATLAB Web Browser, showing those files identified as
having potential problems or opportunities for improvement.

 MATLAB Code Analyzer Report

23-45

4 For each message in the report, review the suggestion and your code. Click the line
number to open the file in the Editor at that line, and change the file based on the
message. Use the following general advice:

• If you are unsure what a message means or what to change in the code, click the
link in the message if one appears. For details, see “Check Code for Errors and
Warnings” on page 23-6.

• If the message does not contain a link, and you are unsure what a message means
or what to do, search for related topics in the Help browser. For examples of
messages and what to do about them, including specific changes to make for
the example, lengthofline.m, see “Changing Code Based on Code Analyzer
Messages” on page 23-46.

• The messages do not provide perfect information about every situation and in
some cases, you might not want to change anything based on the message. For
details, see “Understand the Limitations of Code Analysis” on page 23-17.

• If there are certain messages or types of messages you do not want to see, you can
suppress them. For details, see “Adjust Code Analyzer Message Indicators and
Messages” on page 23-12.

23 Coding and Productivity Tips

23-46

5 After modifying it, save the file. Consider saving the file to a different name if
you made significant changes that might introduce errors. Then you can refer
to the original file, if needed, to resolve problems with the updated file. Use the

Compare button on the Editor or Live Editor tab to help you identify the
changes you made to the file. For more information, see “Comparing Text Files”.

6 Run and debug the file or files again to be sure that you have not introduced any
inadvertent errors.

7 If the report is displaying, click Rerun This Report to update the report based on
the changes you made to the file. Ensure that the messages are gone, based on the
changes you made to the files.

Changing Code Based on Code Analyzer Messages

For information on how to correct the potential problems presented in Code Analyzer
messages, use the following resources:

• Open the file in the Editor and click the Details button in the tooltip, as shown in the
image following this list. An extended message opens. However, not all messages have
extended messages.

• Use the Help browser Search pane to find documentation about terms presented in
the messages.

The following image shows a tooltip with a Details button. The orange line under the
equals (=) sign indicates a tooltip displays if you hover over the equals sign. The orange
highlighting indicates that an automatic fix is available.

 MATLAB Code Analyzer Report

23-47

Other Ways to Access Code Analyzer Messages

You can get Code Analyzer messages using any of the following methods. Each provides
the same messages, but in a different format:

• Access the Code Analyzer Report for a file from the Profiler detail report.
• Run the checkcode function, which analyzes the specified file and displays messages

in the Command Window.
• Run the mlintrpt function, which runs checkcode and displays the messages in the

Web Browser.
• Use automatic code checking while you work on a file in the Editor. See

“Automatically Check Code in the Editor — Code Analyzer” on page 23-6. Automatic
code checking is not supported in live scripts.

24

Programming Utilities

• “Identify Program Dependencies” on page 24-2
• “Protect Your Source Code” on page 24-8
• “Create Hyperlinks that Run Functions” on page 24-11
• “Create and Share Toolboxes” on page 24-14

24 Programming Utilities

24-2

Identify Program Dependencies

If you need to know what other functions and scripts your program is dependent upon,
use one of the techniques described below.

In this section...

“Simple Display of Program File Dependencies” on page 24-2
“Detailed Display of Program File Dependencies” on page 24-2
“Dependencies Within a Folder” on page 24-3

Simple Display of Program File Dependencies

For a simple display of all program files referenced by a particular function, follow these
steps:

1 Type clear functions to clear all functions from memory (see Note below).

Note clear functions does not clear functions locked by mlock. If you have locked
functions (which you can check using inmem) unlock them with munlock, and then
repeat step 1.

2 Execute the function you want to check. Note that the function arguments you
choose to use in this step are important, because you can get different results when
calling the same function with different arguments.

3 Type inmem to display all program files that were used when the function ran. If you
want to see what MEX-files were used as well, specify an additional output:

[mfiles, mexfiles] = inmem

Detailed Display of Program File Dependencies

For a more detailed display of dependent function information, use the
matlab.codetools.requiredFilesAndProducts function. In addition to program
files, matlab.codetools.requiredFilesAndProducts shows which MathWorks
products a particular function depends on. If you have a function, myFun, that calls to the
edge function in the Image Processing Toolbox™:

[fList,pList] = matlab.codetools.requiredFilesAndProducts('myFun.m');

fList

 Identify Program Dependencies

24-3

fList =

 'C:\work\myFun.m'

The only required program file, is the function file itself, myFun.

{pList.Name}'

ans =

 'MATLAB'

 'Image Processing Toolbox'

The file, myFun.m, requires both MATLAB and the Image Processing Toolbox.

Dependencies Within a Folder

The Dependency Report shows dependencies among MATLAB code files in a folder. Use
this report to determine:

• Which files in the folder are required by other files in the folder
• If any files in the current folder will fail if you delete a file
• If any called files are missing from the current folder

The report does not list:

• Files in the toolbox/matlab folder because every MATLAB user has those files.

Therefore, if you use a function file that shadows a built-in function file, MATLAB
excludes both files from the list.

• Files called from anonymous functions.
• The superclass for a class file.
• Files called from eval, evalc, run, load, function handles, and callbacks.

MATLAB does not resolve these files until run time, and therefore the Dependency
Report cannot discover them.

• Some method files.

The Dependency Report finds class constructors that you call in a MATLAB file.
However, any methods you execute on the resulting object are unknown to the report.

24 Programming Utilities

24-4

These methods can exist in the classdef file, as separate method files, or files
belonging to superclass or superclasses of a method file.

Note: MATLAB does not support creating Dependency Reports for live scripts.
When creating a report for all files in a folder, any live script in the selected folder is
excluded from the report.

To provide meaningful results, the Dependency Report requires the following:

• The search path when you run the report is the same as when you run the files in the
folder. (That is, the current folder is at the top of the search path.)

• The files in the folder for which you are running the report do not change the search
path or otherwise manipulate it.

• The files in the folder do not load variables, or otherwise create name clashes that
result in different program elements with the same name.

Note: Do not use the Dependency Report to determine which MATLAB
code files someone else needs to run a particular file. Instead use the
matlab.codetools.requiredFilesAndProducts function.

Creating Dependency Reports

1 Use the Current Folder pane to navigate to the folder containing the files for which
you want to produce a Dependency Report.

Note: You cannot run reports when the path is a UNC (Universal Naming
Convention) path; that is, a path that starts with \\. Instead, use an actual hard
drive on your system, or a mapped network drive.

2 On the Current Folder pane, click , and then select Reports > Dependency
Report.

The Dependency Report opens in the MATLAB Web Browser.
3 If you want, select one or more options within the report, as follows:

• To see a list of all MATLAB code files (children) called by each file in the folder
(parent), select Show child functions.

 Identify Program Dependencies

24-5

The report indicates where each child function resides, for example, in a specified
toolbox. If the report specifies that the location of a child function is unknown, it
can be because:

• The child function is not on the search path.
• The child function is not in the current folder.
• The file was moved or deleted.

• To list the files that call each MATLAB code file, select Show parent functions.

The report limits the parent (calling) functions to functions in the current folder.
• To include local functions in the report, select Show subfunctions. The report

lists local functions directly after the main function and highlights them in gray.
4 Click Run Report on Current Folder.

Reading and Working with Dependency Reports

The following image shows a Dependency Report. It indicates that chirpy.m calls two
files in Signal Processing Toolbox™ and one in Image Processing Toolbox. It also shows
that go.m calls mobius.m, which is in the current folder.

24 Programming Utilities

24-6

 Identify Program Dependencies

24-7

The Dependency Report includes the following:

• MATLAB File List

The list of files in the folder on which you ran the Dependency Report. Click a link in
this column to open the file in the Editor.

• Children

The function or functions called by the MATLAB file.

Click a link in this column to open the MATLAB file listed in the same row, and go
to the first reference to the called function. For instance, suppose your Dependency
Report appears as shown in the previous image. Clicking \images\images\erode.m
opens chirpy.m and places the cursor at the first line that references erode. In other
words, it does not open erode.m.

• Multiple class methods

Because the report is a static analysis, it cannot determine run-time data types and,
therefore, cannot identify the particular class methods required by a file. If multiple
class methods match a referenced method, the Dependency Report inserts a question
mark link next to the file name. The question mark appears in the following image.

Click the question mark link to list the class methods with the specified name that
MATLAB might use. MATLAB lists almost all the method files on the search path
that match the specified method file (in this case, freqresp.m). Do not be concerned
if the list includes methods of classes and MATLAB built-in functions that are
unfamiliar to you.

It is not necessary for you to determine which file MATLAB will use. MATLAB
determines which method to use depending on the object that the program calls at
run time.

24 Programming Utilities

24-8

Protect Your Source Code

Although MATLAB source code (.m) is executable by itself, the contents of MATLAB
source files are easily accessed, revealing design and implementation details. If you do
not want to distribute your proprietary application code in this format, you can use one of
these options instead:

• Deploy as P-code — Convert some or all of your source code files to a content-obscured
form called a P-code file (from its .p file extension), and distribute your application
code in this format. When MATLAB P-codes a file, the file is obfuscated not encrypted.
While the content in a .p file is difficult to understand, it should not be considered
secure. It is not recommended that you P-code files to protect your intellectual
property.

MATLAB does not support converting live scripts to P-code files.
• Compile into binary format — Compile your source code files using the MATLAB

Compiler to produce a standalone application. Distribute the latter to end users of
your application.

Building a Content Obscured Format with P-Code

A P-code file behaves the same as the MATLAB source from which it was produced.
The P-code file also runs at the same speed as the source file. P-code files are purposely
obfuscated. They are not encrypted. While the content in a .p file is difficult to
understand, it should not be considered secure. It is not recommended that you P-code
files to protect your intellectual property.

Note: Because users of P-code files cannot view the MATLAB code, consider providing
diagnostics to enable a user to proceed in the event of an error.

Building the P-Code File

To generate a P-code file, enter the following command in the MATLAB Command
Window:

pcode file1 file2, ...

The command produces the files, file1.p, file2.p, and so on. To convert all .m source
files residing in your current folder to P-code files, use the command:

 Protect Your Source Code

24-9

pcode *.m

See the pcode function reference page for a description of all syntaxes for generating P-
code files.

Invoking the P-Code File

You invoke the resulting P-code file in the same way you invoke the MATLAB .m source
file from which it was derived. For example, to invoke file myfun.p, type

[out, out2, ...] = myfun(in1, in2, ...);

To invoke script myscript.p, type

myscript;

When you call a P-code file, MATLAB gives it execution precedence over its
corresponding .m source file. This is true even if you happen to change the source code at
some point after generating the P-code file. Remember to remove the .m source file before
distributing your code.

Running Older P-Code Files on Later Versions of MATLAB

P-code files are designed to be independent of the release under which they were created
and the release in which they are used (backward and forward compatibility). New and
deprecated MATLAB features can be a problem, but it is the same problem that would
exist if you used the original MATLAB input file. To fix errors of this kind in a P-code
file, fix the corresponding MATLAB input file and create a new P-code file.

P-code files built using MATLAB Version 7.4 and earlier have a different format than
those built with more recent versions of MATLAB. These older P-code files do not run in
MATLAB 8.6 (R2015b) or later. Rebuild any P-code files that were built with MATLAB
7.4 or earlier using a more recent version of MATLAB, and then redistribute them as
necessary.

Building a Standalone Executable

Another way to protect your source code is to build it into a standalone executable and
distribute the executable, along with any other necessary files, to external customers.
You must have the MATLAB Compiler and a supported C or C++ compiler installed to
prepare files for deployment. The end user, however, does not need MATLAB.

24 Programming Utilities

24-10

To build a standalone application for your MATLAB application, develop and debug your
application following the usual procedure for MATLAB program files. Then, generate the
executable file or files following the instructions in “Steps by the Developer to Deploy to
End Users” in the MATLAB Compiler documentation.

 Create Hyperlinks that Run Functions

24-11

Create Hyperlinks that Run Functions

The special keyword matlab: lets you embed commands in other functions. Most
commonly, the functions that contain it display hyperlinks, which execute the commands
when you click the hyperlink text. Functions that support matlab: syntax include disp,
error, fprintf, help, and warning.

Use matlab: syntax to create a hyperlink in the Command Window that runs one or
more functions. For example, you can use disp to display the word Hypotenuse as an
executable hyperlink as follows:

disp('Hypotenuse')

Clicking the hyperlink executes the three commands following matlab:, resulting in

c =

 5

Executing the link creates or redefines the variables a, b, and c in the base workspace.

The argument to disp is an <a href> HTML hyperlink. Include the full hypertext
string, from '<a href= to ' within a single line, that is, do not continue a long
string on a new line. No spaces are allowed after the opening < and before the closing >.
A single space is required between a and href.

You cannot directly execute matlab: syntax. That is, if you type

matlab:a=3; b=4;c=hypot(a,b)

you receive an error, because MATLAB interprets the colon as an array operator in an
illegal context:

??? matlab:a=3; b=4;c=hypot(a,b)

 |

Error: The expression to the left of the equals sign

 is not a valid target for an assignment.

You do not need to use matlab: to display a live hyperlink to the Web. For example, if
you want to link to an external Web page, you can use disp, as follows:

disp('Hypotenuse')

The result in the Command Window looks the same as the previous example, but instead
opens a page at en.wikipedia.org:

Hypotenuse

http://en.wikipedia.org/wiki/Hypotenuse

24 Programming Utilities

24-12

Using matlab:, you can:

• “Run a Single Function” on page 24-12
• “Run Multiple Functions” on page 24-12
• “Provide Command Options” on page 24-13
• “Include Special Characters” on page 24-13

Run a Single Function

Use matlab: to run a specified statement when you click a hyperlink in the Command
Window. For example, run this command:

disp('Generate magic square')

It displays this link in the Command Window:

When you click the link, MATLAB runs magic(4).

Run Multiple Functions

You can run multiple functions with a single link. For example, run this command:

disp('Plot x,y')

It displays this link in the Command Window:

When you click the link, MATLAB runs this code:

x = 0:1:8;

y = sin(x);

plot(x,y)

Redefine x in the base workspace:

x = -2*pi:pi/16:2*pi;

 Create Hyperlinks that Run Functions

24-13

Click the hyperlink, Plot x,y again and it changes the current value of x back to
0:1:8. The code that matlab: runs when you click the Plot x,y defines x in the base
workspace.

Provide Command Options

Use multiple matlab: statements in a file to present options, such as

disp('Disable feature')

disp('Enable feature')

The Command Window displays the links that follow. Depending on which link you click,
MATLAB sets state to 0 or 1.

Include Special Characters

MATLAB correctly interprets most strings that include special characters, such as a
greater than symbol (>). For example, the following statement includes a greater than
symbol (>).

disp(' 0''">Positive')

and generates the following hyperlink.

Some symbols might not be interpreted correctly and you might need to use the ASCII
value for the symbol. For example, an alternative way to run the previous statement is to
use ASCII 62 instead of the greater than symbol:
disp('Positive')

24 Programming Utilities

24-14

Create and Share Toolboxes

In this section...

“Create Toolbox” on page 24-14
“Share Toolbox” on page 24-17

You can package MATLAB files to create a toolbox to share with others. These files can
include MATLAB code, data, apps, examples, and documentation. When you create a
toolbox, MATLAB generates a single installation file (.mltbx) that enables you or others
to install your toolbox.

Create Toolbox

To create a toolbox installation file:

1
In the Environment section of the Home tab, select Package Toolbox from
the Add-Ons menu.

2
In the Package a Toolbox dialog box, click the button and select your toolbox
folder. It is good practice to create the toolbox package from the folder level above
your toolbox folder. The .mltbx toolbox file contains information about the path
settings for your toolbox files and folders. By default, any of the included folders and
files that are on your path when you create the toolbox appear on their paths after
the end users install the toolbox.

3 In the dialog box, add the following information about your toolbox.

Toolbox
Information
Field

Description

Toolbox
Name

Enter the toolbox name, if necessary. By default, the toolbox name is
the name of the toolbox folder. The Toolbox Name becomes the .mltbx
file name.

Version Enter the toolbox version number in the Major.Minor.Bug.Build
format. Bug and Build are optional.

Author
Name,

Enter contact information for the toolbox author. Click Set as default
contact to save the contact information.

 Create and Share Toolboxes

24-15

Toolbox
Information
Field

Description

Email, and
Company
Toolbox
Image

Click Select toolbox image to select an image that represents your
toolbox.

Summary
and
Description

Enter the toolbox summary and description. It is good practice to keep
the Summary text brief and to add detail to the Description text.

4 Review the toolbox contents to ensure MATLAB detects the expected components.
The following sections of the Package a Toolbox dialog box appear after you select a
toolbox folder.

Package
a Toolbox
Dialog Box
Section

Description

Toolbox
Files and
Folders

List of the folders and files contained in your toolbox. The listed files
and folders are only those that are located in the top level of the
toolbox folder. You cannot navigate through the folders in the Toolbox
Packaging dialog box. To exclude a file or folder from the toolbox,
register it in the text file that is displayed when you click Exclude
files and folders. It is good practice to exclude any source control files
related to your toolbox.

External
Files

List of the files required for your toolbox that are located outside the
toolbox folder. By default, MATLAB includes the required files. You
can choose to omit any files you do not want in your toolbox.

MATLAB
Path
Entries

List of the folders that are added to the user’s MATLAB path when
they install a toolbox. By default, the list includes any of the toolbox
folders that are on your path when you create the toolbox. You can
exclude folders from being added to the user’s path by deselecting
them in the list. To reset the list to the default list, click Reset to the
current MATLAB path.

Products List of MathWorks products required by your toolbox. Create this list
manually.

24 Programming Utilities

24-16

Package
a Toolbox
Dialog Box
Section

Description

Examples,
Apps, and
Documentation

List of published MATLAB examples, installable apps, and custom
documentation associated with your toolbox.

• For the Package a Toolbox tool to recognize examples, first publish
them to HTML in MATLAB. For more information, see the
publish function. Include the .m example file and the published
output files in your toolbox folder. Do not specify an output folder
when publishing your examples. For the Package a Toolbox tool to
recognize the examples, the output folder must be the default value
(html).

To create different categories for your examples, place the examples
in different subfolders within your toolbox folder. When you add
your toolbox folder to the Package a Toolbox dialog box, MATLAB
creates a demos.xml file to describe your examples, and takes
the example subfolder name as the example category name.
Alternatively, you can create your own demos.xml file. The
demos.xml file allows recipients to access your examples through
the Supplemental Software link at the bottom of the Help
browser home page. For more information, see “Display Custom
Examples” on page 29-23.

• For the Package a Toolbox tool to recognize apps, first package the
app into a .mlappinstall file. For more information, see “Package
Apps”.

• For the Package a Toolbox tool to recognize custom documentation,
include an info.xml file to identify your documentation
files. If you use the builddocsearchdb function to build the
documentation database prior to packaging your toolbox, you can
include the generated helpsearch subfolder in your toolbox. The
info.xml file and the helpsearch folder allow recipients to access
your documentation through the Supplemental Software link at
the bottom of the Help browser home page. For more information,
see “Display Custom Documentation” on page 29-15.

 Create and Share Toolboxes

24-17

5 Click Package at the top of the Package a Toolbox dialog box. Packaging your
toolbox generates a .mltbx file in your current MATLAB folder.

When you create a toolbox, MATLAB generates a .prj file that contains information
about the toolbox and saves it frequently. It is good practice to save this associated
.prj file so that you can quickly create future revisions of your toolbox.

Share Toolbox

To share your toolbox with others, give them the .mltbx file. All files you added
when you packaged the toolbox are included in the .mltbx file. When the end users
install your toolbox, they do not need to be concerned with the MATLAB path or other
installation details. The .mltbx file manages these details for end users.

For information on installing, uninstalling, and viewing information about toolboxes, see
“Get Add-Ons” and “Manage Your Add-Ons”.

You can share your toolbox with others by attaching the .mltbx file to an email
message, or using any other method you typically use to share files—such as uploading to
MATLAB Central File Exchange. If you upload your toolbox to File Exchange, your users
can download the toolbox from within MATLAB. For more information, see “Get Add-
Ons”.

Note: While .mltbx files can contain any files you specify, MATLAB Central File
Exchange places additional limitations on submissions. Your toolbox cannot be submitted
to File Exchange if it contains any of the following:

• MEX-files

• Other binary executable files, such as DLLs or ActiveX® controls. (Data and image
files are typically acceptable.)

See Also
matlab.addons.toolbox.installedToolboxes

| matlab.addons.toolbox.installToolbox
| matlab.addons.toolbox.packageToolbox
| matlab.addons.toolbox.toolboxVersion |
matlab.addons.toolbox.uninstallToolbox | publish

http://www.mathworks.com/matlabcentral/fileexchange/

24 Programming Utilities

24-18

Related Examples
• “Get Add-Ons”
• “Manage Your Add-Ons”
• “Display Custom Examples” on page 29-23
• “Package Apps”
• “Display Custom Documentation” on page 29-15

Software Development

25

Error Handling

• “Exception Handling in a MATLAB Application” on page 25-2
• “Capture Information About Exceptions” on page 25-5
• “Throw an Exception” on page 25-15
• “Respond to an Exception” on page 25-17
• “Clean Up When Functions Complete” on page 25-22
• “Issue Warnings and Errors” on page 25-28
• “Suppress Warnings” on page 25-31
• “Restore Warnings” on page 25-34
• “Change How Warnings Display” on page 25-37
• “Use try/catch to Handle Errors” on page 25-39

25 Error Handling

25-2

Exception Handling in a MATLAB Application

In this section...

“Overview” on page 25-2
“Getting an Exception at the Command Line” on page 25-2
“Getting an Exception in Your Program Code” on page 25-3
“Generating a New Exception” on page 25-4

Overview

No matter how carefully you plan and test the programs you write, they may not always
run as smoothly as expected when executed under different conditions. It is always a
good idea to include error checking in programs to ensure reliable operation under all
conditions.

In the MATLAB software, you can decide how your programs respond to different
types of errors. You may want to prompt the user for more input, display extended
error or warning information, or perhaps repeat a calculation using default values. The
error-handling capabilities in MATLAB help your programs check for particular error
conditions and execute the appropriate code depending on the situation.

When MATLAB detects a severe fault in the command or program it is running, it
collects information about what was happening at the time of the error, displays a
message to help the user understand what went wrong, and terminates the command or
program. This is called throwing an exception. You can get an exception while entering
commands at the MATLAB command prompt or while executing your program code.

Getting an Exception at the Command Line

If you get an exception at the MATLAB prompt, you have several options on how to deal
with it as described below.

Determine the Fault from the Error Message

Evaluate the error message MATLAB has displayed. Most error messages attempt to
explain at least the immediate cause of the program failure. There is often sufficient
information to determine the cause and what you need to do to remedy the situation.

 Exception Handling in a MATLAB Application

25-3

Review the Failing Code

If the function in which the error occurred is implemented as a MATLAB program file,
the error message should include a line that looks something like this:

surf

Error using surf (line 50)

Not enough input arguments.

The text includes the name of the function that threw the error (surf, in this case) and
shows the failing line number within that function's program file. Click the line number;
MATLAB opens the file and positions the cursor at the location in the file where the error
originated. You may be able to determine the cause of the error by examining this line
and the code that precedes it.

Step Through the Code in the Debugger

You can use the MATLAB Debugger to step through the failing code. Click the
underlined error text to open the file in the MATLAB Editor at or near the point of the
error. Next, click the hyphen at the beginning of that line to set a breakpoint at that
location. When you rerun your program, MATLAB pauses execution at the breakpoint
and enables you to step through the program code. The command dbstop on error is
also helpful in finding the point of error.

See the documentation on “Debug a MATLAB Program” on page 21-2 for more
information.

Getting an Exception in Your Program Code

When you are writing your own program in a program file, you can catch exceptions and
attempt to handle or resolve them instead of allowing your program to terminate. When
you catch an exception, you interrupt the normal termination process and enter a block of
code that deals with the faulty situation. This block of code is called a catch block.

Some of the things you might want to do in the catch block are:

• Examine information that has been captured about the error.
• Gather further information to report to the user.
• Try to accomplish the task at hand in some other way.
• Clean up any unwanted side effects of the error.

25 Error Handling

25-4

When you reach the end of the catch block, you can either continue executing the
program, if possible, or terminate it.

The documentation on “Capture Information About Exceptions” on page 25-5
describes how to acquire information about what caused the error, and “Respond to an
Exception” on page 25-17 presents some ideas on how to respond to it.

Generating a New Exception

When your program code detects a condition that will either make the program fail or
yield unacceptable results, it should throw an exception. This procedure

• Saves information about what went wrong and what code was executing at the time of
the error.

• Gathers any other pertinent information about the error.
• Instructs MATLAB to throw the exception.

The documentation on “Capture Information About Exceptions” on page 25-5
describes how to use an MException object to capture information about the error, and
“Throw an Exception” on page 25-15 explains how to initiate the exception process.

 Capture Information About Exceptions

25-5

Capture Information About Exceptions

In this section...

“Overview” on page 25-5
“The MException Class” on page 25-5
“Properties of the MException Class” on page 25-7
“Methods of the MException Class” on page 25-13

Overview

When the MATLAB software throws an exception, it captures information about what
caused the error in a data structure called an MException object. This object is an
instance of the MATLAB MException class. You can obtain access to the MException
object by catching the exception before your program aborts and accessing the object
constructed for this particular error via the catch command. When throwing an
exception in response to an error in your own code, you will have to create a new
MException object and store information about the error in that object.

This section describes the MException class and objects constructed from that class:

Information on how to use this class is presented in later sections on “Respond to an
Exception” on page 25-17 and “Throw an Exception” on page 25-15.

The MException Class

The figure shown below illustrates one possible configuration of an object of the
MException class. The object has four properties: identifier, message, stack, and
cause. Each of these properties is implemented as a field of the structure that represents
the MException object. The stack field is an N-by-1 array of additional structures, each
one identifying a function, and line number from the call stack. The cause field is an M-
by-1 cell array of MException objects, each representing an exception that is related to
the current one.

See “Properties of the MException Class” on page 25-7 for a full description of these
properties.

25 Error Handling

25-6

MException
 Object

MException
 Object

MException
 Object

MException
 Object

MException
 Object

MException
 Object

MException
 Object

MException
 Object

Object Constructor

Any code that detects an error and throws an exception must also construct an
MException object in which to record and transfer information about the error. The
syntax of the MException constructor is

ME = MException(identifier, message)

where identifier is a MATLAB message identifier of the form

component:mnemonic

 Capture Information About Exceptions

25-7

that is enclosed in single quotes, and message is text, also enclosed in single quotes, that
describes the error. The output ME is the resulting MException object.

If you are responding to an exception rather than throwing one, you do not have to
construct an MException object. The object has already been constructed and populated
by the code that originally detected the error.

Properties of the MException Class

The MException class has four properties. Each of these properties is implemented as
a field of the structure that represents the MException object. Each of these properties
is described in the sections below and referenced in the sections on “Respond to an
Exception” on page 25-17 and “Throw an Exception” on page 25-15. All are read-
only; their values cannot be changed.

The MException properties are:

• identifier

• message

• stack

• cause

If you call the surf function with no inputs, MATLAB throws an exception. If you catch
the exception, you can see the four properties of the MException object structure.
(This example uses try/catch in an atypical fashion. See the section on “The try/catch
Statement” on page 25-17 for more information on using try/catch).

try

 surf

catch ME

 ME

end

Run this at the command line and MATLAB returns the contents of the MException
object:

ME =

 MException object with properties:

 identifier: 'MATLAB:narginchk:notEnoughInputs'

 message: 'Not enough input arguments.'

25 Error Handling

25-8

 stack: [1x1 struct]

 cause: {}

The stack field shows the filename, function, and line number where the exception was
thrown:

ME.stack

ans =

 file: 'matlabroot\toolbox\matlab\graph3d\surf.m'

 name: 'surf'

 line: 54

The cause field is empty in this case. Each field is described in more detail in the
sections that follow.

Message Identifiers

A message identifier is a tag that you attach to an error or warning statement that
makes that error or warning uniquely recognizable by MATLAB. You can use message
identifiers with error reporting to better identify the source of an error, or with warnings
to control any selected subset of the warnings in your programs.

The message identifier is a read-only character vector that specifies a component and a
mnemonic label for an error or warning. The format of a simple identifier is

component:mnemonic

A colon separates the two parts of the identifier: component and mnemonic. If the
identifier uses more than one component, then additional colons are required to separate
them. A message identifier must always contain at least one colon.

Some examples of message identifiers are

MATLAB:rmpath:DirNotFound

MATLAB:odearguments:InconsistentDataType

Simulink:actionNotTaken

TechCorp:OpenFile:notFoundInPath

Both the component and mnemonic fields must adhere to the following syntax rules:

• No white space (space or tab characters) is allowed anywhere in the identifier.
• The first character must be alphabetic, either uppercase or lowercase.
• The remaining characters can be alphanumeric or an underscore.

 Capture Information About Exceptions

25-9

There is no length limitation to either the component or mnemonic. The identifier can
also be an empty character vector.

Component Field

The component field specifies a broad category under which various errors and warnings
can be generated. Common components are a particular product or toolbox name, such
as MATLAB or Control, or perhaps the name of your company, such as TechCorp in the
preceding example.

You can also use this field to specify a multilevel component. The following statement has
a three-level component followed by a mnemonic label:

TechCorp:TestEquipDiv:Waveform:obsoleteSyntax

The component field enables you to guarantee the uniqueness of each identifier.
Thus, while the internal MATLAB code might use a certain warning identifier like
MATLAB:InconsistentDataType, that does not preclude you from using the same
mnemonic, as long as you precede it with a unique component. For example,

warning('TechCorp:InconsistentDataType', ...

 'Value %s is inconsistent with existing properties.' ...

 sprocketDiam)

Mnemonic Field

The mnemonic field is normally used as a tag relating to the particular message. For
example, when reporting an error resulting from the use of ambiguous syntax, a simple
component and mnemonic such as the following might be appropriate:

MATLAB:ambiguousSyntax

Message Identifiers in an MException Object

When throwing an exception, create an appropriate identifier and save it to the
MException object at the time you construct the object using the syntax

ME = MException(identifier, text)

For example,

ME = MException('AcctError:NoClient', ...

 'Client name not recognized.');

ME.identifier

25 Error Handling

25-10

ans =

 AcctError:NoClient

When responding to an exception, you can extract the message identifier from the
MException object as shown here. Using the surf example again,

try

 surf

catch ME

 id = ME.identifier

end

id =

 MATLAB:narginchk:notEnoughInputs

Text of the Error Message

An error message in MATLAB is a read-only character vector issued by the program code
and returned in the MException object. This message can assist the user in determining
the cause, and possibly the remedy, of the failure.

When throwing an exception, compose an appropriate error message and save it to the
MException object at the time you construct the object using the syntax

ME = MException(identifier, text)

If your message requires formatting specifications, like those available with the sprintf
function, use this syntax for the MException constructor:

ME = MException(identifier, formatstring, arg1, arg2, ...)

For example,

S = 'Accounts'; f1 = 'ClientName';

ME = MException('AcctError:Incomplete', ...

 'Field ''%s.%s'' is not defined.', S, f1);

ME.message

ans =

 Field 'Accounts.ClientName' is not defined.

When responding to an exception, you can extract the error message from the
MException object as follows:

try

 Capture Information About Exceptions

25-11

 surf

catch ME

 msg = ME.message

end

msg =

 Not enough input arguments.

The Call Stack

The stack field of the MException object identifies the line number, function, and
filename where the error was detected. If the error occurs in a called function, as in
the following example, the stack field contains the line number, function name, and
filename not only for the location of the immediate error, but also for each of the calling
functions. In this case, stack is an N-by-1 array, where N represents the depth of the
call stack. That is, the stack field displays the function name and line number where the
exception occurred, the name and line number of the caller, the caller's caller, etc., until
the top-most function is reached.

When throwing an exception, MATLAB stores call stack information in the stack field.
You cannot write to this field; access is read-only.

For example, suppose you have three functions that reside in two separate files:

 mfileA.m

=========================

 .

 .

42 function A1(x, y)

43 B1(x, y);

 mfileB.m

=========================

 .

 .

 8 function B1(x, y)

 9 B2(x, y)

 .

 .

26 function B2(x, y)

27 .

28 .

25 Error Handling

25-12

29 .

30 .

31 % Throw exception here

Catch the exception in variable ME and then examine the stack field:

for k=1:length(ME.stack)

 ME.stack(k)

end

ans =

 file: 'C:\matlab\test\mfileB.m'

 name: 'B2'

 line: 31

ans =

 file: 'C:\matlab\test\mfileB.m'

 name: 'B1'

 line: 9

ans =

 file: 'C:\matlab\test\mfileA.m'

 name: 'A1'

 line: 43

The Cause Array

In some situations, it can be important to record information about not only the one
command that caused execution to stop, but also other exceptions that your code caught.
You can save these additional MException objects in the cause field of the primary
exception.

The cause field of an MException is an optional cell array of related MException
objects. You must use the following syntax when adding objects to the cause cell array:
primaryException = addCause(primaryException, secondaryException)

This example attempts to assign an array D to variable X. If the D array does not exist,
the code attempts to load it from a MAT-file and then retries assigning it to X. If the load
fails, a new MException object (ME3) is constructed to store the cause of the first two
errors (ME1 and ME2):

try

 X = D(1:25)

catch ME1

 try

 filename = 'test200';

 Capture Information About Exceptions

25-13

 load(filename);

 X = D(1:25)

 catch ME2

 ME3 = MException('MATLAB:LoadErr', ...

 'Unable to load from file %s', filename);

 ME3 = addCause(ME3, ME1);

 ME3 = addCause(ME3, ME2);

 end

end

There are two exceptions in the cause field of ME3:

ME3.cause

ans =

 [1x1 MException]

 [1x1 MException]

Examine the cause field of ME3 to see the related errors:

ME3.cause{:}

ans =

 MException object with properties:

 identifier: 'MATLAB:UndefinedFunction'

 message: 'Undefined function or method 'D' for input

arguments of type 'double'.'

 stack: [0x1 struct]

 cause: {}

ans =

 MException object with properties:

 identifier: 'MATLAB:load:couldNotReadFile'

 message: 'Unable to read file test204: No such file or

directory.'

 stack: [0x1 struct]

 cause: {}

Methods of the MException Class

There are ten methods that you can use with the MException class. The names of
these methods are case-sensitive. See the MATLAB function reference pages for more
information.

25 Error Handling

25-14

Method Name Description

MException.addCause Append an MException to the cause field of
another MException.

MException.getReport Return a formatted message based on the
current exception.

MException.last Return the last uncaught exception. This is a
static method.

MException.rethrow Reissue an exception that has previously been
caught.

MException.throw Issue an exception.
MException.throwAsCaller Issue an exception, but omit the current stack

frame from the stack field.

 Throw an Exception

25-15

Throw an Exception

When your program detects a fault that will keep it from completing as expected or will
generate erroneous results, you should halt further execution and report the error by
throwing an exception. The basic steps to take are

1 Detect the error. This is often done with some type of conditional statement, such as
an if or try/catch statement that checks the output of the current operation.

2 Construct an MException object to represent the error. Add a message identifier
and error message to the object when calling the constructor.

3 If there are other exceptions that may have contributed to the current error, you can
store the MException object for each in the cause field of a single MException that
you intend to throw. Use the addCause method for this.

4 Use the throw or throwAsCaller function to have the MATLAB software issue the
exception. At this point, MATLAB stores call stack information in the stack field of
the MException, exits the currently running function, and returns control to either
the keyboard or an enclosing catch block in a calling function.

This example illustrates throwing an exception using the steps just described:

Create an array, and an index into it with a logical array.

A = [13 42; 7 20];

idx = [1 0 1; 0 1 0];

Create an exception that provides general information about an error. Test the index
array and add exceptions with more detailed information about the source of the failure.

% 1) Detect the error.

try

 A(idx);

catch

 % 2) Construct an MException object to represent the error.

 msgID = 'MYFUN:BadIndex';

 msg = 'Unable to index into array.';

 baseException = MException(msgID,msg);

 % 3) Store any information contributing to the error.

 try

 assert(islogical(idx),'MYFUN:notLogical',...

25 Error Handling

25-16

 'Indexing array is not logical.')

 catch causeException

 baseException = addCause(baseException,causeException);

 end

 if any(size(idx) > size(A))

 msgID = 'MYFUN:incorrectSize';

 msg = 'Indexing array is too large.';

 causeException2 = MException(msgID,msg);

 baseException = addCause(baseException,causeException2);

 end

 % 4) Throw the exception to stop execution and display an error

 % message.

 throw(baseException)

end

Unable to index into array.

Caused by:

 Indexing array is not logical.

 Indexing array is too large.

 Respond to an Exception

25-17

Respond to an Exception

In this section...

“Overview” on page 25-17
“The try/catch Statement” on page 25-17
“Suggestions on How to Handle an Exception” on page 25-19

Overview

As stated earlier, the MATLAB software, by default, terminates the currently running
program when an exception is thrown. If you catch the exception in your program,
however, you can capture information about what went wrong, and deal with the
situation in a way that is appropriate for the particular condition. This requires a try/
catch statement.

This section covers the following topics:

The try/catch Statement

When you have statements in your code that could generate undesirable results, put
those statements into a try/catch block that catches any errors and handles them
appropriately.

A try/catch statement looks something like the following pseudocode. It consists of two
parts:

• A try block that includes all lines between the try and catch statements.
• A catch block that includes all lines of code between the catch and end statements.

 try

 Perform one ...

 or more operations

A catch ME

 Examine error info in exception object ME

 Attempt to figure out what went wrong

 Either attempt to recover, or clean up and abort

 end

B Program continues

25 Error Handling

25-18

The program executes the statements in the try block. If it encounters an error, it skips
any remaining statements in the try block and jumps to the start of the catch block
(shown here as point A). If all operations in the try block succeed, then execution skips
the catch block entirely and goes to the first line following the end statement (point B).

Specifying the try, catch, and end commands and also the code of the try and catch
blocks on separate lines is recommended. If you combine any of these components on the
same line, separate them with commas:

try, surf, catch ME, ME.stack, end

ans =

 file: 'matlabroot\toolbox\matlab\graph3d\surf.m'

 name: 'surf'

 line: 54

Note: You cannot define nested functions within a try or catch block.

The Try Block

On execution, your code enters the try block and executes each statement as if it were
part of the regular program. If no errors are encountered, MATLAB skips the catch
block entirely and continues execution following the end statement. If any of the try
statements fail, MATLAB immediately exits the try block, leaving any remaining
statements in that block unexecuted, and enters the catch block.

The Catch Block

The catch command marks the start of a catch block and provides access to a data
structure that contains information about what caused the exception. This is shown
as the variable ME in the preceding pseudocode. This data structure is an object of the
MATLAB MException class. When an exception occurs, MATLAB constructs an instance
of this class and returns it in the catch statement that handles that error.

You are not required to specify any argument with the catch statement. If you do not
need any of the information or methods provided by the MException object, just specify
the catch keyword alone.

The MException object is constructed by internal code in the program that fails. The
object has properties that contain information about the error that can be useful in
determining what happened and how to proceed. The MException object also provides

 Respond to an Exception

25-19

access to methods that enable you to respond to the exception. See the section on “The
MException Class” on page 25-5 to find out more about the MException class.

Having entered the catch block, MATLAB executes the statements in sequence. These
statements can attempt to

• Attempt to resolve the error.
• Capture more information about the error.
• Switch on information found in the MException object and respond appropriately.
• Clean up the environment that was left by the failing code.

The catch block often ends with a rethrow command. The rethrow causes MATLAB to
exit the current function, keeping the call stack information as it was when the exception
was first thrown. If this function is at the highest level, that is, it was not called by
another function, the program terminates. If the failing function was called by another
function, it returns to that function. Program execution continues to return to higher
level functions, unless any of these calls were made within a higher-level try block, in
which case the program executes the respective catch block.

More information about the MException class is provided in the section “Capture
Information About Exceptions” on page 25-5.

Suggestions on How to Handle an Exception

The following example reads the contents of an image file. The try block attempts to
open and read the file. If either the open or read fails, the program catches the resulting
exception and saves the MException object in the variable ME1.

The catch block in the example checks to see if the specified file could not be found. If so,
the program allows for the possibility that a common variation of the filename extension
(e.g., jpeg instead of jpg) was used by retrying the operation with a modified extension.
This is done using a try/catch statement nested within the original try/catch.

function d_in = read_image(filename)

[path name ext] = fileparts(filename);

try

 fid = fopen(filename, 'r');

 d_in = fread(fid);

catch ME1

 % Get last segment of the error message identifier.

25 Error Handling

25-20

 idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

 % Did the read fail because the file could not be found?

 if strcmp(idSegLast, 'InvalidFid') && ...

 ~exist(filename, 'file')

 % Yes. Try modifying the filename extension.

 switch ext

 case '.jpg' % Change jpg to jpeg

 filename = strrep(filename, '.jpg', '.jpeg')

 case '.jpeg' % Change jpeg to jpg

 filename = strrep(filename, '.jpeg', '.jpg')

 case '.tif' % Change tif to tiff

 filename = strrep(filename, '.tif', '.tiff')

 case '.tiff' % Change tiff to tif

 filename = strrep(filename, '.tiff', '.tif')

 otherwise

 fprintf('File %s not found\n', filename);

 rethrow(ME1);

 end

 % Try again, with modifed filenames.

 try

 fid = fopen(filename, 'r');

 d_in = fread(fid);

 catch ME2

 fprintf('Unable to access file %s\n', filename);

 ME2 = addCause(ME2, ME1);

 rethrow(ME2)

 end

 end

end

This example illustrates some of the actions that you can take in response to an
exception:

• Compare the identifier field of the MException object against possible causes of
the error.

• Use a nested try/catch statement to retry the open and read operations using a
known variation of the filename extension.

• Display an appropriate message in the case that the file truly does not exist and then
rethrow the exception.

• Add the first MException object to the cause field of the second.

 Respond to an Exception

25-21

• Rethrow the exception. This stops program execution and displays the error message.

Cleaning up any unwanted results of the error is also advisable. For example, your
program may have allocated a significant amount of memory that it no longer needs.

25 Error Handling

25-22

Clean Up When Functions Complete

In this section...

“Overview” on page 25-22
“Examples of Cleaning Up a Program Upon Exit” on page 25-23
“Retrieving Information About the Cleanup Routine” on page 25-25
“Using onCleanup Versus try/catch” on page 25-26
“onCleanup in Scripts” on page 25-27

Overview

A good programming practice is to make sure that you leave your program environment
in a clean state that does not interfere with any other program code. For example, you
might want to

• Close any files that you opened for import or export.
• Restore the MATLAB path.
• Lock or unlock memory to prevent or allow erasing MATLAB function or MEX-files.
• Set your working folder back to its default if you have changed it.
• Make sure global and persistent variables are in the correct state.

MATLAB provides the onCleanup function for this purpose. This function, when
used within any program, establishes a cleanup routine for that function. When the
function terminates, whether normally or in the event of an error or Ctrl+C, MATLAB
automatically executes the cleanup routine.

The following statement establishes a cleanup routine cleanupFun for the currently
running program:

cleanupObj = onCleanup(@cleanupFun);

When your program exits, MATLAB finds any instances of the onCleanup class and
executes the associated function handles. The process of generating and activating
function cleanup involves the following steps:

1 Write one or more cleanup routines for the program under development. Assume for
now that it takes only one such routine.

 Clean Up When Functions Complete

25-23

2 Create a function handle for the cleanup routine.
3 At some point, generally early in your program code, insert a call to the oncleanup

function, passing the function handle.
4 When the program is run, the call to onCleanup constructs a cleanup object that

contains a handle to the cleanup routine created in step 1.
5 When the program ends, MATLAB implicitly clears all objects that are local

variables. This invokes the destructor method for each local object in your program,
including the cleanup object constructed in step 4.

6 The destructor method for this object invokes this routine if it exists. This perform
the tasks needed to restore your programming environment.

You can declare any number of cleanup routines for a program file. Each call to
onCleanup establishes a separate cleanup routine for each cleanup object returned.

If, for some reason, the object returned by onCleanup persists beyond the life of your
program, then the cleanup routine associated with that object is not run when your
function terminates. Instead, it will run whenever the object is destroyed (e.g., by
clearing the object variable).

Your cleanup routine should never rely on variables that are defined outside of that
routine. For example, the nested function shown here on the left executes with no error,
whereas the very similar one on the right fails with the error, Undefined function or
variable 'k'. This results from the cleanup routine's reliance on variable k which is
defined outside of the nested cleanup routine:

function testCleanup function testCleanup

k = 3; k = 3;

myFun obj = onCleanup(@myFun);

 function myFun function myFun

 fprintf('k is %d\n', k) fprintf('k is %d\n', k)

 end end

end end

Examples of Cleaning Up a Program Upon Exit

Example 1 — Close Open Files on Exit

MATLAB closes the file with identifier fid when function openFileSafely terminates:

function openFileSafely(fileName)

25 Error Handling

25-24

fid = fopen(fileName, 'r');

c = onCleanup(@()fclose(fid));

s = fread(fid);

 .

 .

 .

end

Example 2 — Maintain the Selected Folder

This example preserves the current folder whether functionThatMayError returns an
error or not:

function changeFolderSafely(fileName)

 currentFolder = pwd;

 c = onCleanup(@()cd(currentFolder));

 functionThatMayError;

 end % c executes cd(currentFolder) here.

Example 3 — Close Figure and Restore MATLAB Path

This example extends the MATLAB path to include files in the toolbox\images folders,
and then displays a figure from one of these folders. After the figure displays, the cleanup
routine restore_env closes the figure and restores the path to its original state:

function showImageOutsidePath(imageFile)

fig1 = figure;

imgpath = genpath([matlabroot '\toolbox\images']);

% Define the cleanup routine.

cleanupObj = onCleanup(@()restore_env(fig1, imgpath));

% Modify the path to gain access to the image file,

% and display the image.

addpath(imgpath);

rgb = imread(imageFile);

fprintf('\n Opening the figure %s\n', imageFile);

image(rgb);

pause(2);

 % This is the cleanup routine.

 function restore_env(fighandle, newpath)

 Clean Up When Functions Complete

25-25

 disp ' Closing the figure'

 close(fighandle);

 pause(2)

 disp ' Restoring the path'

 rmpath(newpath);

 end

end

Run the function as shown here. You can verify that the path has been restored by
comparing the length of the path before and after running the function:

origLen = length(path);

showImageOutsidePath('greens.jpg')

 Opening the figure greens.jpg

 Closing the figure

 Restoring the path

currLen = length(path);

currLen == origLen

ans =

 1

Retrieving Information About the Cleanup Routine

In Example 3 shown above, the cleanup routine and data needed to call it are contained
in a handle to an anonymous function:

@()restore_env(fig1, imgpath)

The details of that handle are then contained within the object returned by the
onCleanup function:

cleanupObj = onCleanup(@()restore_env(fig1, imgpath));

You can access these details using the task property of the cleanup object as shown here.
(Modify the showImageOutsidePath function by adding the following code just before
the comment line that says, “% This is the cleanup routine.”)

disp ' Displaying information from the function handle:'

task = cleanupObj.task;

fun = functions(task)

wsp = fun.workspace{2,1}

25 Error Handling

25-26

fprintf('\n');

pause(2);

Run the modified function to see the output of the functions command and the
contents of one of the workspace cells:

showImageOutsidePath('greens.jpg')

Opening the figure greens.jpg

Displaying information from the function handle:

fun =

 function: '@()restore_env(fig1,imgpath)'

 type: 'anonymous'

 file: 'c:\work\g6.m'

 workspace: {2x1 cell}

wsp =

 imageFile: 'greens.jpg'

 fig1: 1

 imgpath: [1x3957 char]

 cleanupObj: [1x1 onCleanup]

 rgb: [300x500x3 uint8]

 task: @()restore_env(fig1,imgpath)

Closing the figure

Restoring the path

Using onCleanup Versus try/catch

Another way to run a cleanup routine when a function terminates unexpectedly is to use
a try, catch statement. There are limitations to using this technique however. If the
user ends the program by typing Ctrl+C, MATLAB immediately exits the try block, and
the cleanup routine never executes. The cleanup routine also does not run when you exit
the function normally.

The following program cleans up if an error occurs, but not in response to Ctrl+C:

function cleanupByCatch

try

 pause(10);

catch

 disp(' Collecting information about the error')

 disp(' Executing cleanup tasks')

end

 Clean Up When Functions Complete

25-27

Unlike the try/catch statement, the onCleanup function responds not only to a
normal exit from your program and any error that might be thrown, but also to Ctrl+C.
This next example replaces the try/catch with onCleanup:

function cleanupByFunc

obj = onCleanup(@()...

 disp(' Executing cleanup tasks'));

pause(10);

onCleanup in Scripts

onCleanup does not work in scripts as it does in functions. In functions, the cleanup
object is stored in the function workspace. When the function exits, this workspace is
cleared thus executing the associated cleanup routine. In scripts, the cleanup object is
stored in the base workspace (that is, the workspace used in interactive work done at
the command prompt). Because exiting a script has no effect on the base workspace, the
cleanup object is not cleared and the routine associated with that object does not execute.
To use this type of cleanup mechanism in a script, you would have to explicitly clear the
object from the command line or another script when the first script terminates.

25 Error Handling

25-28

Issue Warnings and Errors

In this section...

“Issue Warnings” on page 25-28
“Throw Errors” on page 25-28
“Add Run-Time Parameters to Your Warnings and Errors” on page 25-29
“Add Identifiers to Warnings and Errors” on page 25-30

Issue Warnings

You can issue a warning to flag unexpected conditions detected when running a program.
The warning function prints a warning message to the command line. Warnings differ
from errors in two significant ways:

• Warnings do not halt the execution of the program.
• You can suppress any unhelpful MATLAB warnings.

Use the warning function in your code to generate a warning message during execution.
Specify the message as the input argument to the warning function:

warning('Input must be text')

For example, you can insert a warning in your code to verify the software version:

function warningExample1

 if ~strncmp(version, '7', 1)

 warning('You are using a version other than v7')

 end

Throw Errors

You can throw an error to flag fatal problems within the program. Use the error
function to print error messages to the command line. After displaying the message,
MATLAB stops the execution of the current program.

For example, suppose you construct a function that returns the number of combinations
of k elements from n elements. Such a function is nonsensical if k > n; you cannot
choose 8 elements if you start with just 4. You must incorporate this fact into the
function to let anyone using combinations know of the problem:

 Issue Warnings and Errors

25-29

function com = combinations(n,k)

 if k > n

 error('Cannot calculate with given values')

 end

 com = factorial(n)/(factorial(k)*factorial(n-k));

end

If the combinations function receives invalid input, MATLAB stops execution
immediately after throwing the error message:

combinations(4,8)

Error using combinations (line 3)

Cannot calculate with given values

Add Run-Time Parameters to Your Warnings and Errors

To make your warning or error messages more specific, insert components of the message
at the time of execution. The warning function uses conversion characters that are the
same as those used by the sprintf function. Conversion characters act as placeholders
for substrings or values, unknown until the code executes.

For example, this warning uses %s and %d to mark where to insert the values of variables
arrayname and arraydims:

warning('Array %s has %d dimensions.',arrayname,arraydims)

If you execute this command with arrayname = 'A' and arraydims = 3, MATLAB
responds:

Warning: Array A has 3 dimensions.

Adding run-time parameters to your warnings and errors can clarify the problems within
a program. Consider the function combinations from “Throw Errors” on page 25-28.
You can throw a much more informative error using run-time parameters:

function com = combinations(n,k)

 if k > n

 error('Cannot choose %i from %i elements',k,n)

 end

 com = factorial(n)/(factorial(k)*factorial(n-k));

end

If this function receives invalid arguments, MATLAB throws an error message and stops
the program:

25 Error Handling

25-30

combinations(6,9)

Error using combinations (line 3)

Cannot choose 9 from 6 elements

Add Identifiers to Warnings and Errors

A message identifier provides a way to uniquely reference a warning or an error.

Enable or disable warnings with identifiers. Use an identifying text argument with the
warning function to attach a unique tag to a message:

warning(identifier_text,message_text)

For example, you can add an identifier tag to the previous MATLAB warning about
which version of software is running:

minver = '7';

if ~strncmp(version,minver,1)

 warning('MYTEST:VERCHK','Running a version other than v%s',minver)

end

Adding an identifier to an error message allows for negative testing. However, adding
and recovering more information from errors often requires working with MException
objects.

See Also
MException | lastwarn | warndlg | warning

Related Examples
• “Suppress Warnings” on page 25-31
• “Restore Warnings” on page 25-34
• “Capture Information About Exceptions” on page 25-5
• “Exception Handling in a MATLAB Application” on page 25-2

More About
• “Message Identifiers” on page 25-8

 Suppress Warnings

25-31

Suppress Warnings

Your program might issue warnings that do not always adversely affect execution. To
avoid confusion, you can hide warning messages during execution by changing their
states from 'on' to 'off'.

To suppress specific warning messages, you must first find the warning identifier.
Each warning message has a unique identifier. To find the identifier associated with a
MATLAB warning, reproduce the warning. For example, this code reproduces a warning
thrown if MATLAB attempts to remove a nonexistent folder:

rmpath('folderthatisnotonpath')

Warning: "folderthatisnotonpath" not found in path.

Note: If this statement does not produce a warning message, use the following code to
temporarily enable the display of all warnings, and then restore the original warning
state:

w = warning ('on','all');

rmpath('folderthatisnotonpath')

warning(w)

To obtain information about the most recently issued warning, use the warning
or lastwarn functions. This code uses the query state to return a data structure
containing the message identifier and the current state of the last warning:

w = warning('query','last')

w =

 identifier: 'MATLAB:rmpath:DirNotFound'

 state: 'on'

You can save the identifier field in the variable, id:

id = w.identifier;

Note: warning('query','last') returns the last displayed warning. MATLAB only
displays warning messages that have state: 'on' and a warning identifier.

25 Error Handling

25-32

Using the lastwarn function, you can retrieve the last warning message, regardless of
its display state:

lastwarn

ans =

"folderthatisnotonpath" not found in path.

Turn Warnings On and Off

After you obtain the identifier from the query state, use this information to disable or
enable the warning associated with that identifier.

Continuing the example from the previous section, turn the warning
'MATLAB:rmpath:DirNotFound' off, and repeat the operation.

warning('off',id)

rmpath('folderthatisnotonpath')

MATLAB displays no warning.

Turn the warning on, and try to remove a nonexistent path:

warning('on',id)

rmpath('folderthatisnotonpath')

Warning: "folderthatisnotonpath" not found in path.

MATLAB now issues a warning.

Tip Turn off the most recently invoked warning with warning('off','last').

Controlling All Warnings

The term all refers only to those warnings that have been issued or modified during
your current MATLAB session. Modified warning states persist only through the current
session. Starting a new session restores the default settings.

Use the identifier 'all' to represent the group of all warnings. View the state of all
warnings with either syntax:

warning('query','all')

 Suppress Warnings

25-33

warning

To enable all warnings and verify the state:

warning('on','all')

warning('query','all')

All warnings have the state 'on'.

To disable all warnings and verify the state, use this syntax:

warning('off','all')

warning

All warnings have the state 'off'.

Related Examples
• “Restore Warnings” on page 25-34
• “Change How Warnings Display” on page 25-37

25 Error Handling

25-34

Restore Warnings

MATLAB allows you to save the on-off warning states, modify warning states, and
restore the original warning states. This is useful if you need to temporarily turn off
some warnings and later reinstate the original settings.

The following statement saves the current state of all warnings in the structure array
called orig_state:

orig_state = warning;

To restore the original state after any warning modifications, use this syntax:

warning(orig_state);

You also can save the current state and toggle warnings in a single command. For
example, the statement, orig_state = warning('off','all'); is equivalent to the
commands:

orig_state = warning;

warning('off','all')

Disable and Restore a Particular Warning

This example shows you how to restore the state of a particular warning.

1 Query the Control:parameterNotSymmetric warning:

 warning('query','Control:parameterNotSymmetric')

The state of warning 'Control:parameterNotSymmetric' is 'on'.

2 Turn off the Control:parameterNotSymmetric warning:

orig_state = warning('off','Control:parameterNotSymmetric')

orig_state =

 identifier: 'Control:parameterNotSymmetric'

 state: 'on'

orig_state contains the warning state before MATLAB turns
Control:parameterNotSymmetric off.

3 Query all warning states:

 Restore Warnings

25-35

warning

The default warning state is 'on'. Warnings not set to the default are

State Warning Identifier

 off Control:parameterNotSymmetric

MATLAB indicates that Control:parameterNotSymmetric is 'off'.
4 Restore the original state:

warning(orig_state)

warning('query','Control:parameterNotSymmetric')

The state of warning 'Control:parameterNotSymmetric' is 'on'.

Disable and Restore Multiple Warnings

This example shows you how to save and restore multiple warning states.

1 Disable three warnings, and query all the warnings:

w(1) = warning('off','MATLAB:rmpath:DirNotFound');

w(2) = warning('off','MATLAB:singularMatrix');

w(3) = warning('off','Control:parameterNotSymmetric');

warning

The default warning state is 'on'. Warnings not set to the default are

State Warning Identifier

 off Control:parameterNotSymmetric

 off MATLAB:rmpath:DirNotFound

 off MATLAB:singularMatrix

2 Restore the three warnings to their the original state, and query all warnings:

warning(w)

warning

All warnings have the state 'on'.

You do not need to store information about the previous warning states in an array,
but doing so allows you to restore warnings with one command.

25 Error Handling

25-36

Note: When temporarily disabling multiple warnings, using methods related to
onCleanup might be advantageous.

Alternatively, you can save and restore all warnings.

1 Enable all warnings, and save the original warning state:

orig_state = warning('on','all');

2 Restore your warnings to the previous state:

warning(orig_state)

See Also
onCleanup | warning

Related Examples
• “Suppress Warnings” on page 25-31
• “Clean Up When Functions Complete” on page 25-22

 Change How Warnings Display

25-37

Change How Warnings Display

You can control how warnings appear in MATLAB by modifying two warning modes,
verbose and backtrace.

Mode Description Default

verbose Display a message on how to
suppress the warning.

off (terse)

backtrace Display a stack trace after a
warning is invoked.

on (enabled)

Note: The verbose and backtrace modes present some limitations:

• prev_state does not contain information about the backtrace or verbose modes
in the statement, prev_state = warning('query','all').

• A mode change affects all enabled warnings.

Enable Verbose Warnings

When you enable verbose warnings, MATLAB displays an extra line of information with
each warning that tells you how to suppress it.

For example, you can turn on all warnings, disable backtrace, and enable verbose
warnings:

warning on all

warning off backtrace

warning on verbose

Running a command that produces an error displays an extended message:

rmpath('folderthatisnotonpath')

Warning: "folderthatisnotonpath" not found in path.

(Type "warning off MATLAB:rmpath:DirNotFound" to suppress this warning.)

25 Error Handling

25-38

Display a Stack Trace on a Specific Warning

It can be difficult to locate the source of a warning when it is generated from code buried
in several levels of function calls. When you enable the backtrace mode, MATLAB
displays the file name and line number where the warning occurred. For example, you
can enable backtrace and disable verbose:

warning on backtrace

warning off verbose

Running a command that produces an error displays a hyperlink with a line number:

Warning: "folderthatisnotonpath" not found in path.

> In rmpath at 58

Clicking the hyperlink takes you to the location of the warning.

 Use try/catch to Handle Errors

25-39

Use try/catch to Handle Errors

You can use a try/catch statement to execute code after your program encounters an
error. try/catch statements can be useful if you:

• Want to finish the program in another way that avoids errors
• Need to clean up unwanted side effects of the error
• Have many problematic input parameters or commands

Arrange try/catch statements into blocks of code, similar to this pseudocode:

try

 try block...

catch

 catch block...

end

If an error occurs within the try block, MATLAB skips any remaining commands in
the try block and executes the commands in the catch block. If no error occurs within
try block, MATLAB skips the entire catch block.

For example, a try/catch statement can prevent the need to throw errors. Consider the
combinations function that returns the number of combinations of k elements from n
elements:

function com = combinations(n,k)

 com = factorial(n)/(factorial(k)*factorial(n-k));

end

MATLAB throws an error whenever k > n. You cannot construct a set with more
elements, k, than elements you possess, n. Using a try/catch statement, you can avoid the
error and execute this function regardless of the order of inputs:

function com = robust_combine(n,k)

 try

 com = factorial(n)/(factorial(k)*factorial(n-k));

 catch

 com = factorial(k)/(factorial(n)*factorial(k-n));

 end

end

robust_combine treats any order of integers as valid inputs:

C1 = robust_combine(8,4)

C2 = robust_combine(4,8)

25 Error Handling

25-40

C1 =

 70

C2 =

 70

Optionally, you can capture more information about errors if a variable follows your
catch statement:

catch MExc

MExc is an MException class object that contains more information about the thrown
error. To learn more about accessing information from MException objects, see
“Exception Handling in a MATLAB Application” on page 25-2.

See Also
MException | onCleanup

26

Program Scheduling

• “Use a MATLAB Timer Object” on page 26-2
• “Timer Callback Functions” on page 26-5
• “Handling Timer Queuing Conflicts” on page 26-10

26 Program Scheduling

26-2

Use a MATLAB Timer Object

In this section...

“Overview” on page 26-2
“Example: Displaying a Message” on page 26-3

Overview

The MATLAB software includes a timer object that you can use to schedule the execution
of MATLAB commands. This section describes how you can create timer objects, start a
timer running, and specify the processing that you want performed when a timer fires. A
timer is said to fire when the amount of time specified by the timer object elapses and the
timer object executes the commands you specify.

To use a timer, perform these steps:

1 Create a timer object.

You use the timer function to create a timer object.
2 Specify which MATLAB commands you want executed when the timer fires and

control other aspects of timer object behavior.

You use timer object properties to specify this information. To learn about all the
properties supported by the timer object, see timer and set. You can also set timer
object properties when you create them, in step 1.

3 Start the timer object.

After you create the timer object, you must start it, using either the start or startat
function.

4 Delete the timer object when you are done with it.

After you are finished using a timer object, you should delete it from memory. See
delete for more information.

Note The specified execution time and the actual execution of a timer can vary because
timer objects work in the MATLAB single-threaded execution environment. The length
of this time lag is dependent on what other processing MATLAB is performing. To force
the execution of the callback functions in the event queue, include a call to the drawnow
function in your code. The drawnow function flushes the event queue.

 Use a MATLAB Timer Object

26-3

Example: Displaying a Message

The following example sets up a timer object that executes a MATLAB command string
after 10 seconds elapse. The example creates a timer object, specifying the values of
two timer object properties, TimerFcn and StartDelay. TimerFcn specifies the timer
callback function. This is the MATLAB command string or program file that you want to
execute when the timer fires. In the example, the timer callback function sets the value
of the MATLAB workspace variable stat and executes the MATLAB disp command.
The StartDelay property specifies how much time elapses before the timer fires.

After creating the timer object, the example uses the start function to start the timer
object. (The additional commands in this example are included to illustrate the timer but
are not required for timer operation.)

t = timer('TimerFcn', 'stat=false; disp(''Timer!'')',...

 'StartDelay',10);

start(t)

stat=true;

while(stat==true)

 disp('.')

 pause(1)

end

When you execute this code, it produces this output:

.

.

.

.

.

.

.

.

.

Timer!

delete(t) % Always delete timer objects after using them.

See Also
timer

26 Program Scheduling

26-4

More About
• “Timer Callback Functions” on page 26-5
• “Handling Timer Queuing Conflicts” on page 26-10

 Timer Callback Functions

26-5

Timer Callback Functions

In this section...

“Associating Commands with Timer Object Events” on page 26-5
“Creating Callback Functions” on page 26-6
“Specifying the Value of Callback Function Properties” on page 26-8

Note Callback function execution might be delayed if the callback involves a CPU-
intensive task such as updating a figure.

Associating Commands with Timer Object Events

The timer object supports properties that let you specify the MATLAB commands that
execute when a timer fires, and for other timer object events, such as starting, stopping,
or when an error occurs. These are called callbacks. To associate MATLAB commands
with a timer object event, set the value of the associated timer object callback property.

The following diagram shows when the events occur during execution of a timer object
and give the names of the timer object properties associated with each event. For
example, to associate MATLAB commands with a start event, assign a value to the
StartFcn callback property. Error callbacks can occur at any time.

26 Program Scheduling

26-6

Timer Object Events and Related Callback Function

Creating Callback Functions

When the time period specified by a timer object elapses, the timer object executes one
or more MATLAB functions of your choosing. You can specify the functions directly as
the value of the callback property. You can also put the commands in a function file and
specify the function as the value of the callback property.

Specifying Callback Functions Directly

This example creates a timer object that displays a greeting after 5 seconds. The example
specifies the value of the TimerFcn callback property directly, putting the commands in
a text string.

 Timer Callback Functions

26-7

t = timer('TimerFcn',@(x,y)disp('Hello World!'),'StartDelay',5);

Note When you specify the callback commands directly as the value of the callback
function property, the commands are evaluated in the MATLAB workspace.

Putting Commands in a Callback Function

Instead of specifying MATLAB commands directly as the value of a callback property,
you can put the commands in a MATLAB program file and specify the file as the value of
the callback property.

When you create a callback function, the first two arguments must be a handle to the
timer object and an event structure. An event structure contains two fields: Type and
Data. The Type field contains a text string that identifies the type of event that caused
the callback. The value of this field can be any of the following strings: 'StartFcn',
'StopFcn', 'TimerFcn', or 'ErrorFcn'. The Data field contains the time the event
occurred.

In addition to these two required input arguments, your callback function can accept
application-specific arguments. To receive these input arguments, you must use a cell
array when specifying the name of the function as the value of a callback property. For
more information, see “Specifying the Value of Callback Function Properties” on page
26-8.

Example: Writing a Callback Function

This example implements a simple callback function that displays the type of event
that triggered the callback and the time the callback occurred. To illustrate passing
application-specific arguments, the example callback function accepts as an additional
argument a text string and includes this text string in the display output. To see this
function used with a callback property, see “Specifying the Value of Callback Function
Properties” on page 26-8.

function my_callback_fcn(obj, event, string_arg)

txt1 = ' event occurred at ';

txt2 = string_arg;

event_type = event.Type;

event_time = datestr(event.Data.time);

26 Program Scheduling

26-8

msg = [event_type txt1 event_time];

disp(msg)

disp(txt2)

Specifying the Value of Callback Function Properties

You associate a callback function with a specific event by setting the value of the
appropriate callback property. You can specify the callback function as a cell array or
function handle. If your callback function accepts additional arguments, you must use a
cell array.

The following table shows the syntax for several sample callback functions and describes
how you call them.

Callback Function Syntax How to Specify as a Property Value for Object
t

function myfile(obj, event) t.StartFcn = @myfile

function myfile t.StartFcn = @(~,~)myfile

function myfile(obj, event, arg1,

arg2)

t.StartFcn = {@myfile, 5, 6}

This example illustrates several ways you can specify the value of timer object callback
function properties, some with arguments and some without. To see the code of the
callback function, my_callback_fcn, see “Example: Writing a Callback Function” on
page 26-7:

1 Create a timer object.

t = timer('StartDelay', 4, 'Period', 4, 'TasksToExecute', 2, ...

 'ExecutionMode', 'fixedRate');

2 Specify the value of the StartFcn callback. Note that the example specifies the
value in a cell array because the callback function needs to access arguments passed
to it:

t.StartFcn = {@my_callback_fcn, 'My start message'};

3 Specify the value of the StopFcn callback. Again, the value is specified in a cell
array because the callback function needs to access the arguments passed to it:

t.StopFcn = { @my_callback_fcn, 'My stop message'};

 Timer Callback Functions

26-9

4 Specify the value of the TimerFcn callback. The example specifies the MATLAB
commands in a text string:

t.TimerFcn = @(x,y)disp('Hello World!');

5 Start the timer object:

start(t)

The example outputs the following.

StartFcn event occurred at 10-Mar-2004 17:16:59

My start message

Hello World!

Hello World!

StopFcn event occurred at 10-Mar-2004 17:16:59

My stop message

6 Delete the timer object after you are finished with it.

delete(t)

See Also
timer

More About
• “Handling Timer Queuing Conflicts” on page 26-10

26 Program Scheduling

26-10

Handling Timer Queuing Conflicts

At busy times, in multiple-execution scenarios, the timer may need to add the timer
callback function (TimerFcn) to the MATLAB execution queue before the previously
queued execution of the callback function has completed. You can determine how the
timer object handles this scenario by setting the BusyMode property to use one of these
modes:

In this section...

“Drop Mode (Default)” on page 26-10
“Error Mode” on page 26-12
“Queue Mode” on page 26-13

Drop Mode (Default)

If you specify 'drop' as the value of the BusyMode property, the timer object adds the
timer callback function to the execution queue only when the queue is empty. If the
execution queue is not empty, the timer object skips the execution of the callback.

For example, suppose you create a timer with a period of 1 second, but a callback that
requires at least 1.6 seconds, as shown here for mytimer.m.

function mytimer()

 t = timer;

 t.Period = 1;

 t.ExecutionMode = 'fixedRate';

 t.TimerFcn = @mytimer_cb;

 t.BusyMode = 'drop';

 t.TasksToExecute = 5;

 t.UserData = tic;

 start(t)

end

function mytimer_cb(h,~)

 timeStart = toc(h.UserData)

 pause(1.6);

 Handling Timer Queuing Conflicts

26-11

 timeEnd = toc(h.UserData)

end

This table describes how the timer manages the execution queue.

Approximate
Elapsed Time
(Seconds)

Action

0 Start the first execution of the callback.
1 Attempt to start the second execution of the callback. The first

execution is not complete, but the execution queue is empty. The
timer adds the callback to the queue.

1.6 Finish the first callback execution, and start the second. This action
clears the execution queue.

2 Attempt to start the third callback execution. The second execution is
not complete, but the queue is empty. The timer adds the callback to
the queue.

3 Attempt to start the fourth callback execution. The third callback
is in the execution queue, so the timer drops this execution of the
function.

3.2 Finish the second callback and start the third, clearing the execution
queue.

4 Attempt to start another callback execution. Because the queue is
empty, the timer adds the callback to the queue. This is the fifth
attempt, but only the fourth instance that will run.

4.8 Finish the third execution and start the fourth instance, clearing the
queue.

5 Attempt to start another callback. An instance is running, but the
execution queue is empty, so the timer adds it to the queue. This is
the fifth instance that will run.

6 Do nothing: the value of the TasksToExecute property is 5, and the
fifth instance to run is in the queue.

6.4 Finish the fourth callback execution and start the fifth.
8 Finish the fifth callback execution.

26 Program Scheduling

26-12

Error Mode

The 'error' mode for the BusyMode property is similar to the 'drop' mode: In
both modes, the timer allows only one instance of the callback in the execution queue.
However, in 'error' mode, when the queue is nonempty, the timer calls the function
that you specify using the ErrorFcn property, and then stops processing. The currently
running callback function completes, but the callback in the queue does not execute.

For example, modify mytimer.m (described in the previous section) so that it includes an
error handling function and sets BusyMode to 'error'.

function mytimer()

 t = timer;

 t.Period = 1;

 t.ExecutionMode = 'fixedRate';

 t.TimerFcn = @mytimer_cb;

 t.ErrorFcn = @myerror;

 t.BusyMode = 'error';

 t.TasksToExecute = 5;

 t.UserData = tic;

 start(t)

end

function mytimer_cb(h,~)

 timeStart = toc(h.UserData)

 pause(1.6);

 timeEnd = toc(h.UserData)

end

function myerror(h,~)

 disp('Reached the error function')

end

This table describes how the timer manages the execution queue.

Approximate
Elapsed Time
(Seconds)

Action

0 Start the first execution of the callback.

 Handling Timer Queuing Conflicts

26-13

Approximate
Elapsed Time
(Seconds)

Action

1 Attempt to start the second execution of the callback. The first
execution is not complete, but the execution queue is empty. The
timer adds the callback to the queue.

1.6 Finish the first callback execution, and start the second. This action
clears the execution queue.

2 Attempt to start the third callback execution. The second execution is
not complete, but the queue is empty. The timer adds the callback to
the queue.

3 Attempt to start the fourth callback execution. The third callback is
in the execution queue. The timer does not execute the third callback,
but instead calls the error handling function.

3.2 Finish the second callback and start the error handling function.

Queue Mode

If you specify 'queue', the timer object waits until the currently executing callback
function finishes before queuing the next execution of the timer callback function.

In 'queue' mode, the timer object tries to make the average time between executions
equal the amount of time specified in the Period property. If the timer object has to wait
longer than the time specified in the Period property between executions of the timer
function callback, it shortens the time period for subsequent executions to make up the
time.

See Also
timer

More About
• “Timer Callback Functions” on page 26-5

27

Performance

• “Measure Performance of Your Program” on page 27-2
• “Profile to Improve Performance” on page 27-5
• “Use Profiler to Determine Code Coverage” on page 27-13
• “Techniques to Improve Performance” on page 27-15
• “Preallocation” on page 27-18
• “Vectorization” on page 27-20

27 Performance

27-2

Measure Performance of Your Program

In this section...

“Overview of Performance Timing Functions” on page 27-2
“Time Functions” on page 27-2
“Time Portions of Code” on page 27-2
“The cputime Function vs. tic/toc and timeit” on page 27-3
“Tips for Measuring Performance” on page 27-3

Overview of Performance Timing Functions

The timeit function and the stopwatch timer functions, tic and toc, enable you to time
how long your code takes to run. Use the timeit function for a rigorous measurement of
function execution time. Use tic and toc to estimate time for smaller portions of code
that are not complete functions.

For additional details about the performance of your code, such as function call
information and execution time of individual lines of code, use the MATLAB Profiler. For
more information, see “Profile to Improve Performance” on page 27-5.

Time Functions

To measure the time required to run a function, use the timeit function. The
timeit function calls the specified function multiple times, and returns the median
of the measurements. It takes a handle to the function to be measured and returns
the typical execution time, in seconds. Suppose that you have defined a function,
computeFunction, that takes two inputs, x and y, that are defined in your workspace.
You can compute the time to execute the function using timeit.

f = @() myComputeFunction; % handle to function

timeit(f)

Time Portions of Code

To estimate how long a portion of your program takes to run or to compare the speed
of different implementations of portions of your program, use the stopwatch timer

 Measure Performance of Your Program

27-3

functions, tic and toc. Invoking tic starts the timer, and the next toc reads the
elapsed time.

tic

 % The program section to time.

toc

Sometimes programs run too fast for tic and toc to provide useful data. If your code is
faster than 1/10 second, consider measuring it running in a loop, and then average to find
the time for a single run.

The cputime Function vs. tic/toc and timeit

It is recommended that you use timeit or tic and toc to measure the performance
of your code. These functions return wall-clock time. Unlike tic and toc,
the timeit function calls your code multiple times, and, therefore, considers first-time
costs.

The cputime function measures the total CPU time and sums across all threads. This
measurement is different from the wall-clock time that timeit or tic/toc return, and
could be misleading. For example:

• The CPU time for the pause function is typically small, but the wall-clock time
accounts for the actual time that MATLAB execution is paused. Therefore, the wall-
clock time might be longer.

• If your function uses four processing cores equally, the CPU time could be
approximately four times higher than the wall-clock time.

Tips for Measuring Performance

Consider the following tips when you are measuring the performance of your code:

• Time a significant enough portion of code. Ideally, the code you are timing should take
more than 1/10 second to run.

• Put the code you are trying to time into a function instead of timing it at the
command line or inside a script.

• Unless you are trying to measure first-time cost, run your code multiple times. Use
the timeit function.

• Avoid clear all when measuring performance. For more information, see the
clear function.

27 Performance

27-4

• Assign your output to a variable instead of letting it default to ans.

See Also
profile | tic | timeit | toc

Related Examples
• “Profile to Improve Performance” on page 27-5
• “Techniques to Improve Performance” on page 27-15
• MATLAB Performance Measurement White Paper on MATLAB Central File

Exchange

http://www.mathworks.com/matlabcentral/fileexchange/18510-matlab-performance-measurement
http://www.mathworks.com/matlabcentral/fileexchange/18510-matlab-performance-measurement

 Profile to Improve Performance

27-5

Profile to Improve Performance

In this section...

“What Is Profiling?” on page 27-5
“Profiling Process and Guidelines” on page 27-5
“Using the Profiler” on page 27-6
“Profile Summary Report” on page 27-8
“Profile Detail Report” on page 27-10

What Is Profiling?

Profiling is a way to measure where a program spends time. After you identify which
functions are consuming the most time, you can evaluate them for possible performance
improvements. Also, you can profile your code as a debugging tool. For example,
determining which lines of code MATLAB does not run can help you develop test cases
that exercise that code. If you get an error in the file when profiling, you can see what
ran and what did not to help you isolate the problem.

Tip Code that is prematurely optimized can be unnecessarily complex without providing
a significant gain in performance. Make your first implementation as simple as possible.
Then, if speed is an issue, use profiling to identify bottlenecks.

You can profile your code using the MATLAB Profiler. The Profiler is a user interface
based on the results returned by the profile function. If you are profiling code that
runs in parallel, for best results use the Parallel Computing Toolbox™ parallel profiler.
For details, see “Profiling Parallel Code”.

Profiling Process and Guidelines

Use this general process to improve performance in your code:

1 Run the Profiler on your code.
2 In the Profile Summary report, look for functions that use a significant amount of

time or that are called most frequently.
3 View the Profile Detail report for those functions, and look for the lines of code that

take the most time or are called most often.

27 Performance

27-6

Consider keeping a copy of your first detail report as a basis for comparison. After
you change your code, you can run the Profiler again and compare the reports.

4 Determine whether there are changes you can make to those lines of code to improve
performance.

For example, if you have a load statement within a loop, you might be able to move
the load statement outside the loop so that it is called only once.

5 Implement the potential performance improvements in your code. Save the files,
and run clear all. Run the Profiler again and compare the results to the original
report.

If you profile the identical code twice, you can get slightly different results each time
due to inherent time fluctuations that are not dependent on your code.

6 To continue improving the performance of your code, repeat these steps.

When your code spends most of its time on calls to a few built-in functions, you have
probably optimized the code as much as possible.

Using the Profiler

To profile a MATLAB code file or a line of code:

1 Open the Profiler using one of the following methods:

• In the Command Window, type profile viewer.
•

On the Home tab, in the Code section, click Run and Time.
•

In the Editor, on the Editor tab, in the Run section, click Run and Time.
If you use this method, the Profiler automatically profiles the code in the current
Editor tab. If that is the code you want to profile, skip to step 4.

2 In the Run this code field, type the statement you want to run.

For example, you can run the Lotka-Volterra example, which is provided with
MATLAB:

[t,y] = ode23('lotka',[0 2],[20;20])

If, in the current MATLAB session, you previously profiled the statement, select it
from the Run this code list. MATLAB automatically starts profiling the code, and
you can skip to step 4.

 Profile to Improve Performance

27-7

3 Click Start Profiling.

While the Profiler is running, the Profile time indicator is green and the number of
seconds it reports increases. The Profile time indicator appears at the top right of
the Profiler window.

When the Profiler finishes, the Profile time indicator turns black and shows the
length of time the Profiler ran. The statements you profiled display as having been
executed in the Command Window.

This time is not the actual time that your statements took to run. It is the time
elapsed from when you clicked Start Profiling until the profiling stops. If the
time reported is very different from what you expected (for example, hundreds of
seconds for a simple statement), you might have profiled longer than necessary. This
time does not match the time reported in Profile Summary report statistics, which
is based on performance clock time by default. To view profile statistics using a
different type of clock, use the profile function instead of the Profiler.

4 When profiling is complete, the Profile Summary report appears in the Profiler
window. For more information, see “Profile Summary Report” on page 27-8.

Profile Multiple Statements in Command Window

To profile more than one statement:

1 In the Profiler, click Start Profiling. Make sure that no code appears in the Run
this code field.

2 In the Command Window, enter and run the statements you want to profile.
3

After running all the statements, click Stop Profiling in the Profiler, and view the
Profile Summary report.

Profile a User Interface

You can run the Profiler for a user interface, such as the Filter Design and Analysis tool
included with Signal Processing Toolbox. Or, you can profile an interface you created,
such as one built using GUIDE.

27 Performance

27-8

To profile a user interface:

1 In the Profiler, click Start Profiling. Make sure that no code appears in the Run
this code field.

2 Start the user interface.
3 Use the interface. When you finish, click Stop Profiling in the Profiler, and view

the Profile Summary report.

Note: To exclude the user interface startup process in the profile, reverse steps 1 and 2.
In other words, start the user interface before you click Start Profiling.

Profile Summary Report

The Profile Summary report presents statistics about the overall execution of the
function and provides summary statistics for each function called. The following is
an image of the Profile Summary report for the Lotka-Volterra model. See “Using the
Profiler” on page 27-6.

 Profile to Improve Performance

27-9

The Profile Summary report presents this information.

Column Description

Function
Name

List of all the functions called by the profiled code. Initially the functions
appear in order of time they took to process.

Calls Number of times the profiled code called the function.
Total Time Total time spent in a function, including all accessed child functions, in

seconds. The time for a function includes time spent in child functions.
The Profiler itself takes some time, which is included in the results. The
total time can be zero for files whose run time is inconsequential.

Self Time Total time in seconds spent in a function, excluding time spent in any
child functions. Self time also includes some overhead resulting from the
process of profiling.

Total Time
Plot

Graphic display showing self time compared to total time.

27 Performance

27-10

In the summary report, you can:

• Print the report, by clicking the print button .
• Get more detailed information about a particular function by clicking its name in the

Function Name column. For more information, see “Profile Detail Report” on page
27-10.

• Sort by a given column by clicking the name of the column. For example, click the
Function Name link to sort the functions alphabetically. Initially the results appear
in order by Total Time.

Profile Detail Report

The Profile Detail report shows profiling results for a function that MATLAB called while
profiling.

To open the Profile Detail report, click a function name in the Profile Summary report.
To return to the Profile Summary report from the Profile Detail report, click in the
toolbar of the Profile window.

The header of the Profile Detail report contains this information.

• Name of the profiled function
• Number of times the parent function called the profiled function
• Time spent in the profiled function
• Link to open the function in your default editor
• Link to copy the report to a separate window. Saving a copy of the report is helpful to

compare the impact of changes to your function. when you change the file.

To specify which sections the Profile Detail Report includes, select the check boxes at the
top of the report, and click the Refresh button. Use the check boxes to select from these
options.

Display Option Details

Show parent functions Display information about the parent functions, with links
to their detail reports. To open a Profile Detail report for a
parent function, click the name of the function.

Show busy lines List the lines in the profiled function that used the greatest
amount of processing time.

 Profile to Improve Performance

27-11

Display Option Details

Show child functions List all the functions called by the profiled function. To open
a Profile Detail report for a child function, click the name of
the function.

Show Code Analyzer
results

Display information about problems and potential
improvements for the profiled function.

Show file coverage Display statistics about the lines of code in the function that
MATLAB executed while profiling.

Show function listing Display the source code for the function, if it is a MATLAB
code file.

For each line of code, the Function listing includes these
columns:

• Execution time for each line of code
• Number of times that MATLAB executed the line of code
• The line number
• The source code for the function. The color of the text

indicates the following:

• Green — Commented lines
• Black — Executed lines of code
• Gray — Non-executed lines of code

By default, the Profile Detail report highlights lines of code
with the longest execution time. The darker the highlighting,
the longer the line of code took to execute. To change the
highlighting criteria, use the color highlight code drop-down
list.

See Also
profile

More About
• “Measure Performance of Your Program” on page 27-2
• “Techniques to Improve Performance” on page 27-15

27 Performance

27-12

• “Use Profiler to Determine Code Coverage” on page 27-13

 Use Profiler to Determine Code Coverage

27-13

Use Profiler to Determine Code Coverage

When you run the Profiler on a file, some code might not run, such as a block containing
an if statement.

To determine how much of a file MATLAB executed when you profiled it, run the
Coverage Report.

1 Profile your MATLAB code file. For more information, see “Profile to Improve
Performance” on page 27-5 or the profile function.

2 Ensure that the Profiler is not currently profiling.

• In the Profiler, a Stop Profiling button displays if the Profiler is running. If the
Profiler is running, click the Stop Profiling button.

• At the command prompt, check the Profiler status using profile status. If the
ProfilerStatus is 'on', stop the Profiler by typing profile off.

3 Use the Current Folder browser to navigate to the folder containing the profiled code
file.

Note: You cannot run reports when the path is a UNC (Universal Naming
Convention) path; that is, a path that starts with \\. Instead, use an actual hard
drive on your system, or a mapped network drive.

4 On the Current Folder browser, click , and then select Reports > Coverage
Report.

The Profiler Coverage Report opens, providing a summary of coverage for the
profiled file. In the following image, the profiled file is lengthofline2.m.

27 Performance

27-14

5 Click the Coverage link to see the Profile Detail Report for the file.

Note: MATLAB does not support creating Profiler Coverage Reports for live scripts.
When creating a report for all files in a folder, any live script in the selected folder is
excluded from the report.

See Also
profile

More About
• “Profile to Improve Performance” on page 27-5
• “Measure Performance of Your Program” on page 27-2
• “Techniques to Improve Performance” on page 27-15

 Techniques to Improve Performance

27-15

Techniques to Improve Performance

In this section...

“Environment” on page 27-15
“Code Structure” on page 27-15
“Programming Practices for Performance” on page 27-15
“Tips on Specific MATLAB Functions” on page 27-16

To speed up the performance of your code, consider these techniques.

Environment

Be aware of background processes that share computational resources and decrease the
performance of your MATLAB code.

Code Structure

While organizing your code:

• Use functions instead of scripts. Functions are generally faster.
• Prefer local functions over nested functions. Use this practice especially if the function

does not need to access variables in the main function.
• Use modular programming. To avoid large files and files with infrequently accessed

code, split your code into simple and cohesive functions. This practice can decrease
first-time run costs.

Programming Practices for Performance

Consider these programming practices to improve the performance of your code.

• Preallocate — Instead of continuously resizing arrays, consider preallocating
the maximum amount of space required for an array. For more information, see
“Preallocation” on page 27-18.

• Vectorize — Instead of writing loop-based code, consider using MATLAB matrix and
vector operations. For more information, see “Vectorization” on page 27-20.

27 Performance

27-16

• Place independent operations outside loops — If code does not evaluate differently
with each for or while loop iteration, move it outside of the loop to avoid redundant
computations.

• Create new variables if data type changes — Create a new variable rather than
assigning data of a different type to an existing variable. Changing the class or array
shape of an existing variable takes extra time to process.

• Use short-circuit operators — Use short-circuiting logical operators, && and || when
possible. Short-circuiting is more efficient because MATLAB evaluates the second
operand only when the result is not fully determined by the first operand. For more
information, see Logical Operators: Short Circuit.

• Avoid global variables — Minimizing the use of global variables is a good
programming practice, and global variables can decrease performance of your
MATLAB code.

• Avoid overloading built-ins — Avoid overloading built-in functions on any standard
MATLAB data classes.

• Avoid using “data as code” — If you have large portions of code (for example, over
500 lines) that generate variables with constant values, consider constructing the
variables and saving them in a MAT-file. Then you can load the variables instead of
executing code to generate them.

Tips on Specific MATLAB Functions

Consider the following tips on specific MATLAB functions when writing performance
critical code.

• Avoid clearing more code than necessary. Do not use clear all programmatically.
For more information, see clear.

• Avoid functions that query the state of MATLAB such as inputname, which, whos,
exist(var), and dbstack. Run-time introspection is computationally expensive.

• Avoid functions such as eval, evalc, evalin, and feval(fname). Use the
function handle input to feval whenever possible. Indirectly evaluating a MATLAB
expression from text is computationally expensive.

• Avoid programmatic use of cd, addpath, and rmpath, when possible. Changing the
MATLAB path during run time results in code recompilation.

More About
• “Measure Performance of Your Program” on page 27-2

 Techniques to Improve Performance

27-17

• “Profile to Improve Performance” on page 27-5
• “Preallocation” on page 27-18
• “Vectorization” on page 27-20
• “Graphics Performance”

27 Performance

27-18

Preallocation

for and while loops that incrementally increase the size of a data structure each time
through the loop can adversely affect performance and memory use. Repeatedly resizing
arrays often requires MATLAB to spend extra time looking for larger contiguous blocks
of memory, and then moving the array into those blocks. Often, you can improve code
execution time by preallocating the maximum amount of space required for the array.

The following code displays the amount of time needed to create a scalar variable, x, and
then to gradually increase the size of x in a for loop.

tic

x = 0;

for k = 2:1000000

 x(k) = x(k-1) + 5;

end

toc

Elapsed time is 0.301528 seconds.

If you preallocate a 1-by-1,000,000 block of memory for x and initialize it to zero, then the
code runs much faster because there is no need to repeatedly reallocate memory for the
growing data structure.

tic

x = zeros(1, 1000000);

for k = 2:1000000

 x(k) = x(k-1) + 5;

end

toc

Elapsed time is 0.011938 seconds.

Use the appropriate preallocation function for the kind of array you want to initialize:

• zeros for numeric arrays
• cell for character arrays

Preallocating a Nondouble Matrix

When you preallocate a block of memory to hold a matrix of some type other than
double, avoid using the method

 Preallocation

27-19

A = int8(zeros(100));

This statement preallocates a 100-by-100 matrix of int8, first by creating a full matrix of
double values, and then by converts each element to int8. Creating the array as int8
values saves time and memory. For example:

A = zeros(100, 'int8');

Related Examples
• “Resizing and Reshaping Matrices”
• “Preallocate Memory for a Cell Array” on page 11-16
• “Access Data Using Categorical Arrays” on page 8-29
• “Preallocate Arrays of Graphics Objects”
• “Construct Object Arrays”

More About
• “Techniques to Improve Performance” on page 27-15

27 Performance

27-20

Vectorization

In this section...

“Using Vectorization” on page 27-20
“Array Operations” on page 27-21
“Logical Array Operations” on page 27-22
“Matrix Operations” on page 27-23
“Ordering, Setting, and Counting Operations” on page 27-25
“Functions Commonly Used in Vectorization” on page 27-26

Using Vectorization

MATLAB is optimized for operations involving matrices and vectors. The process of
revising loop-based, scalar-oriented code to use MATLAB matrix and vector operations is
called vectorization. Vectorizing your code is worthwhile for several reasons:

• Appearance: Vectorized mathematical code appears more like the mathematical
expressions found in textbooks, making the code easier to understand.

• Less Error Prone: Without loops, vectorized code is often shorter. Fewer lines of code
mean fewer opportunities to introduce programming errors.

• Performance: Vectorized code often runs much faster than the corresponding code
containing loops.

Vectorizing Code for General Computing

This code computes the sine of 1,001 values ranging from 0 to 10:

i = 0;

for t = 0:.01:10

 i = i + 1;

 y(i) = sin(t);

end

This is a vectorized version of the same code:

t = 0:.01:10;

y = sin(t);

 Vectorization

27-21

The second code sample usually executes faster than the first and is a more efficient use
of MATLAB. Test execution speed on your system by creating scripts that contain the
code shown, and then use the tic and toc functions to measure their execution time.

Vectorizing Code for Specific Tasks

This code computes the cumulative sum of a vector at every fifth element:

x = 1:10000;

ylength = (length(x) - mod(length(x),5))/5;

y(1:ylength) = 0;

for n= 5:5:length(x)

 y(n/5) = sum(x(1:n));

end

Using vectorization, you can write a much more concise MATLAB process. This code
shows one way to accomplish the task:

x = 1:10000;

xsums = cumsum(x);

y = xsums(5:5:length(x));

Array Operations

Array operators perform the same operation for all elements in the data set. These types
of operations are useful for repetitive calculations. For example, suppose you collect the
volume (V) of various cones by recording their diameter (D) and height (H). If you collect
the information for just one cone, you can calculate the volume for that single cone:

V = 1/12*pi*(D^2)*H;

Now, collect information on 10,000 cones. The vectors D and H each contain 10,000
elements, and you want to calculate 10,000 volumes. In most programming languages,
you need to set up a loop similar to this MATLAB code:

for n = 1:10000

 V(n) = 1/12*pi*(D(n)^2)*H(n));

end

With MATLAB, you can perform the calculation for each element of a vector with similar
syntax as the scalar case:

% Vectorized Calculation

V = 1/12*pi*(D.^2).*H;

27 Performance

27-22

Note: Placing a period (.) before the operators *, /, and ^, transforms them into array
operators.

Logical Array Operations

A logical extension of the bulk processing of arrays is to vectorize comparisons and
decision making. MATLAB comparison operators accept vector inputs and return vector
outputs.

For example, suppose while collecting data from 10,000 cones, you record several
negative values for the diameter. You can determine which values in a vector are valid
with the >= operator:

D = [-0.2 1.0 1.5 3.0 -1.0 4.2 3.14];

D >= 0

ans =

 0 1 1 1 0 1 1

You can directly exploit the logical indexing power of MATLAB to select the valid cone
volumes, Vgood, for which the corresponding elements of D are nonnegative:

Vgood = V(D >= 0);

MATLAB allows you to perform a logical AND or OR on the elements of an entire vector
with the functions all and any, respectively. You can throw a warning if all values of D
are below zero:

if all(D < 0)

 warning('All values of diameter are negative.')

 return

end

MATLAB can compare two vectors of the same size, allowing you to impose further
restrictions. This code finds all the values where V is nonnegative and D is greater than
H:

V((V >= 0) & (D > H))

The resulting vector is the same size as the inputs.

To aid comparison, MATLAB contains special values to denote overflow, underflow, and
undefined operators, such as inf and nan. Logical operators isinf and isnan exist

 Vectorization

27-23

to help perform logical tests for these special values. For example, it is often useful to
exclude NaN values from computations:

x = [2 -1 0 3 NaN 2 NaN 11 4 Inf];

xvalid = x(~isnan(x))

xvalid =

 2 -1 0 3 2 11 4 Inf

Note: Inf == Inf returns true; however, NaN == NaN always returns false.

Matrix Operations

Matrix operations act according to the rules of linear algebra. These operations are most
useful in vectorization if you are working with multidimensional data.

Suppose you want to evaluate a function, F, of two variables, x and y.

F(x,y) = x*exp(-x
2
 - y

2
)

To evaluate this function at every combination of points in the x and y, you need to
define a grid of values:

x = -2:0.2:2;

y = -1.5:0.2:1.5;

[X,Y] = meshgrid(x,y);

F = X.*exp(-X.^2-Y.^2);

Without meshgrid, you might need to write two for loops to iterate through vector
combinations. The function ndgrid also creates number grids from vectors, but can
construct grids beyond three dimensions. meshgrid can only construct 2-D and 3-D
grids.

In some cases, using matrix multiplication eliminates intermediate steps needed to
create number grids:

x = -2:2;

y = -1:0.5:1;

x'*y

ans =

27 Performance

27-24

 2.0000 1.0000 0 -1.0000 -2.0000

 1.0000 0.5000 0 -0.5000 -1.0000

 0 0 0 0 0

 -1.0000 -0.5000 0 0.5000 1.0000

 -2.0000 -1.0000 0 1.0000 2.0000

Constructing Matrices

When vectorizing code, you often need to construct a matrix with a particular size or
structure. Techniques exist for creating uniform matrices. For instance, you might need a
5-by-5 matrix of equal elements:

A = ones(5,5)*10;

Or, you might need a matrix of repeating values:

v = 1:5;

A = repmat(v,3,1)

A =

 1 2 3 4 5

 1 2 3 4 5

 1 2 3 4 5

The function repmat possesses flexibility in building matrices from smaller matrices or
vectors. repmat creates matrices by repeating an input matrix:

A = repmat(1:3,5,2)

B = repmat([1 2; 3 4],2,2)

A =

 1 2 3 1 2 3

 1 2 3 1 2 3

 1 2 3 1 2 3

 1 2 3 1 2 3

 1 2 3 1 2 3

B =

 1 2 1 2

 3 4 3 4

 1 2 1 2

 3 4 3 4

 Vectorization

27-25

The bsxfun function provides a way of combining matrices of different dimensions.
Suppose that matrix A represents test scores, the rows of which denote different classes.
You want to calculate the difference between the average score and individual scores for
each class. Your first thought might be to compute the simple difference, A - mean(A).
However, MATLAB throws an error if you try this code because the matrices are not the
same size. Instead, bsxfun performs the operation without explicitly reconstructing the
input matrices so that they are the same size.

A = [97 89 84; 95 82 92; 64 80 99;76 77 67;...

 88 59 74; 78 66 87; 55 93 85];

dev = bsxfun(@minus,A,mean(A))

dev =

 18 11 0

 16 4 8

 -15 2 15

 -3 -1 -17

 9 -19 -10

 -1 -12 3

 -24 15 1

Ordering, Setting, and Counting Operations

In many applications, calculations done on an element of a vector depend on other
elements in the same vector. For example, a vector, x, might represent a set. How to
iterate through a set without a for or while loop is not obvious. The process becomes
much clearer and the syntax less cumbersome when you use vectorized code.

Eliminating Redundant Elements

A number of different ways exist for finding the redundant elements of a vector. One way
involves the function diff. After sorting the vector elements, equal adjacent elements
produce a zero entry when you use the diff function on that vector. Because diff(x)
produces a vector that has one fewer element than x, you must add an element that is
not equal to any other element in the set. NaN always satisfies this condition. Finally, you
can use logical indexing to choose the unique elements in the set:

x = [2 1 2 2 3 1 3 2 1 3];

x = sort(x);

difference = diff([x,NaN]);

y = x(difference~=0)

27 Performance

27-26

y =

 1 2 3

Alternatively, you could accomplish the same operation by using the unique function:

y=unique(x);

However, the unique function might provide more functionality than is needed and slow
down the execution of your code. Use the tic and toc functions if you want to measure
the performance of each code snippet.

Counting Elements in a Vector

Rather than merely returning the set, or subset, of x, you can count the occurrences of an
element in a vector. After the vector sorts, you can use the find function to determine
the indices of zero values in diff(x) and to show where the elements change value. The
difference between subsequent indices from the find function indicates the number of
occurrences for a particular element:

x = [2 1 2 2 3 1 3 2 1 3];

x = sort(x);

difference = diff([x,max(x)+1]);

count = diff(find([1,difference]))

y = x(find(difference))

count =

 3 4 3

y =

 1 2 3

The find function does not return indices for NaN elements. You can count the number of
NaN and Inf values using the isnan and isinf functions.

count_nans = sum(isnan(x(:)));

count_infs = sum(isinf(x(:)));

Functions Commonly Used in Vectorization

Function Description

all Determine if all array elements are nonzero or true

 Vectorization

27-27

Function Description

any Determine if any array elements are nonzero
cumsum Cumulative sum
diff Differences and Approximate Derivatives
find Find indices and values of nonzero elements
ind2sub Subscripts from linear index
ipermute Inverse permute dimensions of N-D array
logical Convert numeric values to logicals
meshgrid Rectangular grid in 2-D and 3-D space
ndgrid Rectangular grid in N-D space
permute Rearrange dimensions of N-D array
prod Product of array elements
repmat Repeat copies of array
reshape Reshape array
shiftdim Shift dimensions
sort Sort array elements
squeeze Remove singleton dimensions
sub2ind Convert subscripts to linear indices
sum Sum of array elements

More About
• “Matrix Indexing”
• “Techniques to Improve Performance” on page 27-15

External Websites
• MathWorks Newsletter: Matrix Indexing in MATLAB

http://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

28

Memory Usage

• “Strategies for Efficient Use of Memory” on page 28-2
• “Resolve “Out of Memory” Errors” on page 28-9
• “How MATLAB Allocates Memory” on page 28-12

28 Memory Usage

28-2

Strategies for Efficient Use of Memory

In this section...

“Ways to Reduce the Amount of Memory Required” on page 28-2
“Using Appropriate Data Storage” on page 28-4
“How to Avoid Fragmenting Memory” on page 28-6
“Reclaiming Used Memory” on page 28-8

Ways to Reduce the Amount of Memory Required

The source of many "out of memory" problems often involves analyzing or processing an
existing large set of data such as in a file or a database. This requires bringing all or part
of the data set into the MATLAB software process. The following techniques deal with
minimizing the required memory during this stage.

Load Only As Much Data As You Need

Only import into MATLAB as much of a large data set as you need for the problem you
are trying to solve. This is not usually a problem when importing from sources such as
a database, where you can explicitly search for elements matching a query. But this is
a common problem with loading large flat text or binary files. Rather than loading the
entire file, use the appropriate MATLAB function to load parts of files.

MAT-Files

Load part of a variable by indexing into an object that you create with the matfile
function.

Text Files

Use the textscan function to access parts of a large text file by reading only the selected
columns and rows. If you specify the number of rows or a repeat format number with
textscan, MATLAB calculates the exact amount of memory required beforehand.

Binary Files

You can use low-level binary file I/O functions, such as fread, to access parts of any
file that has a known format. For binary files of an unknown format, try using memory
mapping with the memmapfile function.

 Strategies for Efficient Use of Memory

28-3

Image, HDF, Audio, and Video Files

Many of the MATLAB functions that support loading from these types of files allow you
to select portions of the data to read. For details, see the function reference pages listed
in “Supported File Formats for Import and Export”.

Process Data By Blocks

Consider block processing, that is, processing a large data set one section at a time in a
loop. Reducing the size of the largest array in a data set reduces the size of any copies or
temporaries needed. You can use this technique in either of two ways:

• For a subset of applications that you can break into separate chunks and process
independently.

• For applications that only rely on the state of a previous block, such as filtering.

Avoid Creating Temporary Arrays

Avoid creating large temporary variables, and also make it a practice to clear those
temporary variables you do use when they are no longer needed. For example, when
you create a large array of zeros, instead of saving to a temporary variable A, and then
converting A to a single:

A = zeros(1e6,1);

As = single(A);

use just the one command to do both operations:

A = zeros(1e6,1,'single');

Using the repmat function, array preallocation and for loops are other ways to work on
nondouble data without requiring temporary storage in memory.

Use Nested Functions to Pass Fewer Arguments

When working with large data sets, be aware that MATLAB makes a temporary copy
of an input variable if the called function modifies its value. This temporarily doubles
the memory required to store the array, which causes MATLAB to generate an error if
sufficient memory is not available.

One way to use less memory in this situation is to use nested functions. A nested function
shares the workspace of all outer functions, giving the nested function access to data

28 Memory Usage

28-4

outside of its usual scope. In the example shown here, nested function setrowval has
direct access to the workspace of the outer function myfun, making it unnecessary to pass
a copy of the variable in the function call. When setrowval modifies the value of A, it
modifies it in the workspace of the calling function. There is no need to use additional
memory to hold a separate array for the function being called, and there also is no need
to return the modified value of A:

function myfun

A = magic(500);

 function setrowval(row, value)

 A(row,:) = value;

 end

setrowval(400, 0);

disp('The new value of A(399:401,1:10) is')

A(399:401,1:10)

end

Using Appropriate Data Storage

MATLAB provides you with different sizes of data classes, such as double and uint8, so
you do not need to use large classes to store your smaller segments of data. For example,
it takes 7 KB less memory to store 1,000 small unsigned integer values using the uint8
class than it does with double.

Use the Appropriate Numeric Class

The numeric class you should use in MATLAB depends on your intended actions. The
default class double gives the best precision, but requires 8 bytes per element of memory
to store. If you intend to perform complicated math such as linear algebra, you must use
a floating-point class such as a double or single. The single class requires only 4
bytes. There are some limitations on what you can do with the single class, but most
MATLAB Math operations are supported.

If you just need to carry out simple arithmetic and you represent the original data as
integers, you can use the integer classes in MATLAB. The following is a list of numeric
classes, memory requirements (in bytes), and the supported operations.

Class (Data Type) Bytes Supported Operations

single 4 Most math

 Strategies for Efficient Use of Memory

28-5

Class (Data Type) Bytes Supported Operations

double 8 All math
logical 1 Logical/conditional operations
int8, uint8 1 Arithmetic and some simple functions
int16, uint16 2 Arithmetic and some simple functions
int32, uint32 4 Arithmetic and some simple functions
int64, int64 8 Arithmetic and some simple functions

Reduce the Amount of Overhead When Storing Data

MATLAB arrays (implemented internally as mxArrays) require room to store meta
information about the data in memory, such as type, dimensions, and attributes. This
takes about 80 bytes per array. This overhead only becomes an issue when you have a
large number (e.g., hundreds or thousands) of small mxArrays (e.g., scalars). The whos
command lists the memory used by variables, but does not include this overhead.

Because simple numeric arrays (comprising one mxArray) have the least overhead, you
should use them wherever possible. When data is too complex to store in a simple array
(or matrix), you can use other data structures.

Cell arrays are comprised of separate mxArrays for each element. As a result, cell arrays
with many small elements have a large overhead.

Structures require a similar amount of overhead per field (see “Array Headers” on page
28-14). Structures with many fields and small contents have a large overhead and
should be avoided. A large array of structures with numeric scalar fields requires much
more memory than a structure with fields containing large numeric arrays.

Also note that while MATLAB stores numeric arrays in contiguous memory, this is not
the case for structures and cell arrays.

Import Data to the Appropriate MATLAB Class

When reading data from a binary file with fread, it is a common error to specify only
the class of the data in the file, and not the class of the data MATLAB uses once it is in
the workspace. As a result, the default double is used even if you are reading only 8-bit
values. For example,

fid = fopen('large_file_of_uint8s.bin', 'r');

28 Memory Usage

28-6

a = fread(fid, 1e3, 'uint8'); % Requires 8k

whos a

 Name Size Bytes Class Attributes

 a 1000x1 8000 double

a = fread(fid, 1e3, 'uint8=>uint8'); % Requires 1k

whos a

 Name Size Bytes Class Attributes

 a 1000x1 1000 uint8

Make Arrays Sparse When Possible

If your data contains many zeros, consider using sparse arrays, which store only nonzero
elements. The following example compares the space required for storage of an array of
mainly zeros:

A = eye(1000); % Full matrix with ones on the diagonal

As = sparse(A); % Sparse matrix with only nonzero elements

whos

 Name Size Bytes Class Attributes

 A 1000x1000 8000000 double

 As 1000x1000 24008 double sparse

You can see that this array requires only approximately 4 KB to be stored as sparse,
but approximately 8 MB as a full matrix. In general, for a sparse double array with nnz
nonzero elements and ncol columns, the memory required is

• 16 * nnz + 8 * ncol + 8 bytes (on a 64-bit machine)
• 12 * nnz + 4 * ncol + 4 bytes (on a 32-bit machine)

Note that MATLAB does not support all mathematical operations on sparse arrays.

How to Avoid Fragmenting Memory

MATLAB always uses a contiguous segment of memory to store a numeric array. As
you manipulate this data, however, the contiguous block can become fragmented. When
memory is fragmented, there might be plenty of free space, but not enough contiguous
memory to store a new large variable. Increasing fragmentation can use significantly
more memory than is necessary.

 Strategies for Efficient Use of Memory

28-7

Preallocate Contiguous Memory When Creating Arrays

In the course of a MATLAB session, memory can become fragmented due to dynamic
memory allocation and deallocation. for and while loops that incrementally increase,
or grow, the size of a data structure each time through the loop can add to this
fragmentation as they have to repeatedly find and allocate larger blocks of memory to
store the data.

To make more efficient use of your memory, preallocate a block of memory large enough
to hold the matrix at its final size before entering the loop. When you preallocate memory
for an array, MATLAB reserves sufficient contiguous space for the entire full-size array
at the beginning of the computation. Once you have this space, you can add elements to
the array without having to continually allocate new space for it in memory.

For more information on preallocation, see “Preallocation” on page 27-18.

Allocate Your Larger Arrays First

MATLAB uses a heap method of memory management. It requests memory from the
operating system when there is not enough memory available in the heap to store the
current variables. It reuses memory as long as the size of the memory segment required
is available in the heap.

The following statements can require approximately 4.3 MB of RAM. This is because
MATLAB might not be able to reuse the space previously occupied by two 1 MB arrays
when allocating space for a 2.3 MB array:

a = rand(1e6,1);

b = rand(1e6,1);

clear

c = rand(2.3e6,1);

The simplest way to prevent overallocation of memory is to allocate the largest vectors
first. These statements require only about 2.0 MB of RAM:

c = rand(2.3e6,1);

clear

a = rand(1e6,1);

b = rand(1e6,1);

Long-Term Usage (Windows Systems Only)

On 32-bit Microsoft Windows, the workspace of MATLAB can fragment over time due
to the fact that the Windows memory manager does not return blocks of certain types

28 Memory Usage

28-8

and sizes to the operating system. Clearing the MATLAB workspace does not fix this
problem. You can minimize the problem by allocating the largest variables first. This
cannot address, however, the eventual fragmentation of the workspace that occurs from
continual use of MATLAB over many days and weeks, for example. The only solution to
this is to save your work and restart MATLAB.

The pack command, which saves all variables to disk and loads them back, does not help
with this situation.

Reclaiming Used Memory

One simple way to increase the amount of memory you have available is to clear large
arrays that you no longer use.

Save Your Large Data Periodically to Disk

If your program generates very large amounts of data, consider writing the data to disk
periodically. After saving that portion of the data, use the clear function to remove the
variable from memory and continue with the data generation.

Clear Old Variables from Memory When No Longer Needed

When you are working with a very large data set repeatedly or interactively, clear the
old variable first to make space for the new variable. Otherwise, MATLAB requires
temporary storage of equal size before overriding the variable. For example,

a = rand(100e6,1) % 800 MB array

b = rand(100e6,1) % New 800 MB array

Error using rand

Out of memory. Type HELP MEMORY for your options.

clear a

a = rand(100e6,1) % New 800 MB array

 Resolve “Out of Memory” Errors

28-9

Resolve “Out of Memory” Errors

In this section...

“General Suggestions for Reclaiming Memory” on page 28-9
“Increase System Swap Space” on page 28-10
“Set the Process Limit on Linux Systems” on page 28-10
“Disable Java VM on Linux Systems” on page 28-10
“Free System Resources on Windows Systems” on page 28-11

General Suggestions for Reclaiming Memory

The MATLAB software is a 64-bit application that runs on 64-bit operating systems. It
generates an Out of Memory message whenever it requests a segment of memory from
the operating system that is larger than what is available. When you see the Out of
Memory message, use any of the techniques discussed under “Strategies for Efficient Use
of Memory” on page 28-2 to help optimize the available memory including:

• Reducing required memory
• Selecting appropriate data storage
• Using contiguous memory
• Reclaiming used memory

If the Out of Memory message still appears, you can try any of the following:

• If possible, reduce the size of your data. For example, break large matrices into
several smaller matrices so that less memory is used at any one time.

• If you have large files and data sets, see “Large Files and Big Data”.
• Make sure that there are no external constraints on the memory accessible to

MATLAB. On Linux® systems, use the limit command to investigate.
• Increase the size of the swap file. We recommend that you configure your system with

twice as much swap space as you have RAM. For more information, see “Increase
System Swap Space” on page 28-10.

• Add more memory to the system.

28 Memory Usage

28-10

Increase System Swap Space

The total memory available to applications on your computer is composed of physical
memory (RAM), plus a page file, or swap file, on disk. The swap file can be very large (for
example, 512 terabytes on 64-bit Windows). The operating system allocates the virtual
memory for each process to physical memory or to the swap file, depending on the needs
of the system and other processes.

Most systems enable you to control the size of your swap file. The steps involved depend
on your operating system.

• Windows Systems — Use the Windows Control Panel to change the size of the virtual
memory paging file on your system. For more information, refer to the Windows help.

• Linux Systems — Change your swap space by using the mkswap and swapon
commands. For more information, at the Linux prompt type man followed by the
command name.

There is no interface for directly controlling the swap space on Macintosh OS X systems.

Set the Process Limit on Linux Systems

The process limit is the maximum amount of virtual memory a single process (or
application) can address. The process limit must be large enough to accommodate:

• All the data to process
• MATLAB program files
• The MATLAB executable itself
• Additional state information

The 64-bit operating systems support a process limit of 8 terabytes. On Linux systems,
see the ulimit command to view and set user limits including virtual memory.

Disable Java VM on Linux Systems

On Linux systems, if you start MATLAB without the Java JVM™, you can increase
the available workspace memory by approximately 400 megabytes. To start MATLAB
without Java JVM, use the command-line option -nojvm. This option also increases the
size of the largest contiguous memory block by about the same. By increasing the largest
contiguous memory block, you increase the largest possible matrix size.

 Resolve “Out of Memory” Errors

28-11

Using -nojvm comes with a penalty in that you lose many features that rely on the Java
software, including the entire development environment. Starting MATLAB with the -
nodesktop option does not save any substantial amount of memory.

Free System Resources on Windows Systems

There are no MATLAB functions to manipulate the way MATLAB handles Microsoft
Windows system resources. Windows systems use these resources to track fonts,
windows, and screen objects. For example, using multiple figure windows, multiple fonts,
or several UI controls can deplete resources. One way to free up system resources is to
close all inactive windows. Windows system icons still use resources.

If total system memory is the limiting factor, shutting down other applications and
services can help (for example, using msconfig on Windows systems). However, the
process limit is usually the main limiting factor.

See Also
memory

Related Examples
• “Strategies for Efficient Use of Memory” on page 28-2
• “Large Files and Big Data”
• “Java Heap Memory Preferences”

28 Memory Usage

28-12

How MATLAB Allocates Memory
In this section...

“Memory Allocation for Arrays” on page 28-12
“Data Structures and Memory” on page 28-16

Memory Allocation for Arrays

The following topics provide information on how the MATLAB software allocates memory
when working with arrays and variables. The purpose is to help you use memory more
efficiently when writing code. Most of the time, however, you should not need to be
concerned with these internal operations as MATLAB handles data storage for you
automatically.

• “Creating and Modifying Arrays” on page 28-12
• “Copying Arrays” on page 28-13
• “Array Headers” on page 28-14
• “Function Arguments” on page 28-15

Note Any information on how the MATLAB software handles data internally is subject to
change in future releases.

Creating and Modifying Arrays

When you assign a numeric or character array to a variable, MATLAB allocates a
contiguous virtual block of memory and stores the array data in that block. MATLAB
also stores information about the array data, such as its class and dimensions, in a
separate, small block of memory called a header.

If you add new elements to an existing array, MATLAB expands the existing array in
memory in a way that keeps its storage contiguous. This usually requires finding a new
block of memory large enough to hold the expanded array. MATLAB then copies the
contents of the array from its original location to this new block in memory, adds the new
elements to the array in this block, and frees up the original array location in memory.

If you remove elements from an existing array, MATLAB keeps the memory storage
contiguous by removing the deleted elements, and then compacting its storage in the
original memory location.

 How MATLAB Allocates Memory

28-13

Working with Large Data Sets

If you are working with large data sets, you need to be careful when increasing the size of
an array to avoid getting errors caused by insufficient memory. If you expand the array
beyond the available contiguous memory of its original location, MATLAB must make a
copy of the array and set this copy to the new value. During this operation, there are two
copies of the original array in memory. This temporarily doubles the amount of memory
required for the array and increases the risk of your program running out of memory
during execution. It is better to preallocate sufficient memory for the largest potential
size of the array at the start. See “Preallocation” on page 27-18.

Copying Arrays

Internally, multiple variables can point to the same block of data, thus sharing that
array's value. When you copy a variable to another variable (e.g., B = A), MATLAB
makes a copy of the array reference, but not the array itself. As long as you do not modify
the contents of the array, there is no need to store more than one copy of it. If you do
modify any elements of the array, MATLAB makes a copy of the array and then modifies
that copy.

The following example demonstrates this. Start by creating a simple script memUsed.m to
display how much memory is being used by your MATLAB process. Put these two lines of
code in the script:

[usr, sys] = memory;

usr.MemUsedMATLAB

Get an initial reading of how much memory is being used by your MATLAB process:

format short eng;

memUsed

ans =

 295.4977e+006

Create a 2000-by-2000 numeric array A. This uses about 32MB of memory:

A = magic(2000);

memUsed

ans =

 327.6349e+006

Make a copy of array A in B. As there is no need to have two copies of the array data,
MATLAB only makes a copy of the array reference. This requires no significant
additional memory:

28 Memory Usage

28-14

B = A;

memUsed

ans =

 327.6349e+006

Now modify B by making it one half its original size (that is, set 1000 rows to empty).
This requires that MATLAB make a copy of at least the first 1000 rows of the A array,
and assign that copy to B:

B(1001:2000,:) = [];

format short; size(B)

ans =

 1000 2000

Check the memory used again. Even though B is significantly smaller than it was
originally, the amount of memory used by the MATLAB process has increased by about
16 MB (1/2 of the 32 MB originally required for A) because B could no longer remain as
just a reference to A:

format short eng; memUsed

ans =

 343.6421e+006

Array Headers

When you assign an array to a variable, MATLAB also stores information about the
array (such as class and dimensions) in a separate piece of memory called a header. For
most arrays, the memory required to store the header is insignificant. There is a small
advantage to storing large data sets in a small number of large arrays as opposed to a
large number of small arrays. This is because the former configuration requires fewer
array headers.

Structure and Cell Arrays

For structures and cell arrays, MATLAB creates a header not only for each array, but
also for each field of the structure and for each cell of a cell array. Because of this, the
amount of memory required to store a structure or cell array depends not only on how
much data it holds, but also on how it is constructed.

For example, take a scalar structure array S1 having fields R, G, and B. Each field of size
100-by-50 requires one array header to describe the overall structure, one header for each
unique field name, and one header per field for the 1-by-1 structure array. This makes a
total of seven array headers for the entire data structure:

 How MATLAB Allocates Memory

28-15

S1.R(1:100,1:50)

S1.G(1:100,1:50)

S1.B(1:100,1:50)

On the other hand, take a 100-by-50 structure array S2 in which each element has
scalar fields R, G, and B. In this case, you need one array header to describe the overall
structure, one for each unique field name, and one per field for each of the 5,000 elements
of the structure, making a total of 15,004 array headers for the entire data structure:

S2(1:100,1:50).R

S2(1:100,1:50).G

S2(1:100,1:50).B

Even though S1 and S2 contain the same amount of data, S1 uses significantly less space
in memory. Not only is less memory required, but there is a corresponding speed benefit
to using the S1 format, as well.

See “Cell Arrays” and “Structures” under “Data Structures and Memory” on page
28-16.

Memory Usage Reported By the whos Function

The whos function displays the amount of memory consumed by any variable. For
reasons of simplicity, whos reports only the memory used to store the actual data. It does
not report storage for the array header, for example.

Function Arguments

MATLAB handles arguments passed in function calls in a similar way. When you pass a
variable to a function, you are actually passing a reference to the data that the variable
represents. As long as the input data is not modified by the function being called, the
variable in the calling function and the variable in the called function point to the same
location in memory. If the called function modifies the value of the input data, then
MATLAB makes a copy of the original array in a new location in memory, updates that
copy with the modified value, and points the input variable in the called function to this
new array.

In the example below, function myfun modifies the value of the array passed into it.
MATLAB makes a copy in memory of the array pointed to by A, sets variable X as a
reference to this new array, and then sets one row of X to zero. The array referenced by A
remains unchanged:

A = magic(500);

28 Memory Usage

28-16

myfun(A);

function myfun(X)

X(400,:) = 0;

If the calling function needs the modified value of the array it passed to myfun, you
need to return the updated array as an output of the called function, as shown here for
variable A:

A = magic(500);

A = myfun(A);

sprintf('The new value of A is %d', A)

function Y = myfun(X)

X(400,:) = 0;

Y = X;

Data Structures and Memory

Memory requirements differ for the various types of MATLAB data structures. You
might be able to reduce the amount of memory used for these structures by considering
how MATLAB stores them.

Numeric Arrays

MATLAB requires 1, 2, 4, or 8 bytes to store 8-bit, 16-bit, 32-bit, and 64-bit signed and
unsigned integers, respectively. For floating-point numbers, MATLAB uses 4 or 8 bytes
for single and double types. To conserve memory when working with numeric arrays,
MathWorks recommends that you use the smallest integer or floating-point type that
contains your data without overflowing. For more information, see “Numeric Types”.

Complex Arrays

MATLAB stores complex data as separate real and imaginary parts. If you make a copy
of a complex array variable, and then modify only the real or imaginary part of the array,
MATLAB creates an array containing both real and imaginary parts.

Sparse Matrices

It is best to store matrices with values that are mostly zero in sparse format. Sparse
matrices can use less memory and might also be faster to manipulate than full matrices.
You can convert a full matrix to sparse format using the sparse function.

 How MATLAB Allocates Memory

28-17

Compare two 1000-by-1000 matrices: X, a matrix of doubles with 2/3 of its elements equal
to zero; and Y, a sparse copy of X. The following example shows that the sparse matrix
requires approximately half as much memory:

whos

 Name Size Bytes Class

 X 1000x1000 8000000 double array

 Y 1000x1000 4004000 double array (sparse)

Cell Arrays

In addition to data storage, cell arrays require a certain amount of additional memory
to store information describing each cell. This information is recorded in a header, and
there is one header for each cell of the array. You can determine the amount of memory
required for a cell array header by finding the number of bytes consumed by a 1-by-1 cell
that contains no data, as shown below for a 32-bit system:

A = {[]}; % Empty cell array

whos A

 Name Size Bytes Class Attributes

 A 1x1 60 cell

In this case, MATLAB shows the number of bytes required for each header in the cell
array on a 32-bit system to be 60. This is the header size that is used in all of the 32-bit
examples in this section. For 64-bit systems, the header size is assumed to be 112 bytes
in this documentation. You can find the correct header size on a 64-bit system using the
method just shown for 32 bits.

To predict the size of an entire cell array, multiply the number you have just derived for
the header by the total number of cells in the array, and then add to that the number of
bytes required for the data you intend to store in the array:

(header_size x number_of_cells) + data

So a 10-by-20 cell array that contains 400 bytes of data would require 22,800 bytes of
memory on a 64-bit system:

(112 x 200) + 400 = 22800

28 Memory Usage

28-18

Note: While numeric arrays must be stored in contiguous memory, structures and cell
arrays do not.

Example 1 – Memory Allocation for a Cell Array

The following 4-by-1 cell array records the brand name, screen size, price, and on-sale
status for three laptop computers:

Laptops = {['SuperrrFast 89X', 'ReliablePlus G5', ...

 'UCanA4dIt 140L6']; ...

 [single(17), single(15.4), single(14.1)]; ...

 [2499.99, 1199.99, 499.99]; ...

 [true, true, false]};

On a 32-bit system, the cell array header alone requires 60 bytes per cell:

4 cells * 60 bytes per cell = 240 bytes for the cell array

Calculate the memory required to contain the data in each of the four cells:

45 characters * 2 bytes per char = 90 bytes

 3 doubles * 8 bytes per double = 24 bytes

 3 singles * 4 bytes per single = 12 bytes

 3 logicals * 1 byte per logical = 3 bytes

90 + 24 + 12 + 3 = 129 bytes for the data

Add the two, and then compare your result with the size returned by MATLAB:

240 + 129 = 369 bytes total

whos Laptops

 Name Size Bytes Class Attributes

 Laptops 4x1 369 cell

Structures

S.A = [];

B = whos('S');

B.bytes - 60

ans =

 64

 How MATLAB Allocates Memory

28-19

Compute the memory needed for a structure array as follows:

32-bit systems: fields x ((60 x array elements) + 64) + data

64-bit systems: fields x ((112 x array elements) + 64) + data

On a 64-bit computer system, a 4-by-5 structure Clients with fields Address and
Phone uses 4,608 bytes just for the structure:

2 fields x ((112 x 20) + 64) = 2 x (2240 + 64) = 4608 bytes

To that sum, you must add the memory required to hold the data assigned to each field.
If you assign a 25-character vector to Address and a 12-character vector to Phone in
each element of the 4-by-5 Clients array, you use 1480 bytes for data:

(25+12) characters * 2 bytes per char * 20 elements = 1480 bytes

Add the two and you see that the entire structure consumes 6,088 bytes of memory.

Example 1 – Memory Allocation for a Structure Array

Compute the amount of memory that would be required to store the following 6-by-5
structure array having the following four fields on a 32-bit system:

A: 5-by-8-by-6 signed 8-bit integer array

B: 1-by-500 single array

C: 30-by-30 unsigned 16-bit integer array

D: 1-by-27 character array

Construct the array:

A = int8(ones(5,8,6));

B = single(1:500);

C = uint16(magic(30));

D = 'Company Name: MathWorks';

s = struct('f1', A, 'f2', B, 'f3', C, 'f4', D);

for m=1:6

 for n=1:5

 s(m,n)=s(1,1);

 end

end

Calculate the amount of memory required for the structure itself, and then for the data it
contains:

28 Memory Usage

28-20

structure = fields x ((60 x array elements) + 64) =

 4 x ((60 x 30) + 64) = 7,456 bytes

data = (field1 + field2 + field3 + field4) x array elements =

 (240 + 2000 + 1800 + 54) x 30 = 122,820 bytes

Add the two, and then compare your result with the size returned by MATLAB:

Total bytes calculated for structure s: 7,456 + 122,820 = 130,276

whos s

 Name Size Bytes Class Attributes

 s 6x5 130036 struct

29

Custom Help and Documentation

• “Create Help for Classes” on page 29-2
• “Check Which Programs Have Help” on page 29-9
• “Create Help Summary Files — Contents.m” on page 29-12
• “Display Custom Documentation” on page 29-15
• “Display Custom Examples” on page 29-23

29 Custom Help and Documentation

29-2

Create Help for Classes

In this section...

“Help Text from the doc Command” on page 29-2
“Custom Help Text” on page 29-3

Help Text from the doc Command

When you use the doc command to display help for a class, MATLAB automatically
displays information that it derives from the class definition.

For example, create a class definition file named someClass.m with several properties
and methods, as shown.

classdef someClass

 % someClass Summary of this class goes here

 % Detailed explanation goes here

 properties

 One % First public property

 Two % Second public property

 end

 properties (Access=private)

 Three % Do not show this property

 end

 methods

 function obj = someClass

 % Summary of constructor

 end

 function myMethod(obj)

 % Summary of myMethod

 disp(obj)

 end

 end

 methods (Static)

 function myStaticMethod

 % Summary of myStaticMethod

 end

 end

end

 Create Help for Classes

29-3

View the help text and the details from the class definition using the doc command.

doc someClass

Custom Help Text

You can add information about your classes that both the doc command and the help
command include in their displays. The doc command displays the help text at the top of
the generated HTML pages, above the information derived from the class definition. The
help command displays the help text in the Command Window. For details, see:

• “Classes” on page 29-4
• “Methods” on page 29-5
• “Properties” on page 29-5
• “Enumerations” on page 29-6

29 Custom Help and Documentation

29-4

• “Events” on page 29-7

Classes

Create help text for classes by including comments on lines immediately after the
classdef statement in a file. For example, create a file named myClass.m, as shown.

classdef myClass

 % myClass Summary of myClass

 % This is the first line of the description of myClass.

 % Descriptions can include multiple lines of text.

 %

 % myClass Properties:

 % a - Description of a

 % b - Description of b

 %

 % myClass Methods:

 % doThis - Description of doThis

 % doThat - Description of doThat

 properties

 a

 b

 end

 methods

 function obj = myClass

 end

 function doThis(obj)

 end

 function doThat(obj)

 end

 end

end

Lists and descriptions of the properties and methods in the initial comment block
are optional. If you include comment lines containing the class name followed by
Properties or Methods and a colon (:), then MATLAB creates hyperlinks to the help
for the properties or methods.

View the help text for the class in the Command Window using the help command.

help myClass

 Create Help for Classes

29-5

 myClass Summary of myClass

 This is the first line of the description of myClass.

 Descriptions can include multiple lines of text.

 myClass Properties:

 a - Description of a

 b - Description of b

 myClass Methods:

 doThis - Description of doThis

 doThat - Description of doThat

Methods

Create help for a method by inserting comments immediately after the function
definition statement. For example, modify the class definition file myClass.m to include
help for the doThis method.

 function doThis(obj)

 % doThis Do this thing

 % Here is some help text for the doThis method.

 %

 % See also DOTHAT.

 disp(obj)

 end

View the help text for the method in the Command Window using the help command.
Specify both the class name and method name, separated by a dot.

help myClass.doThis

 doThis Do this thing

 Here is some help text for the doThis method.

 See also doThat.

Properties

There are two ways to create help for properties:

• Insert comment lines above the property definition. Use this approach for multiline
help text.

• Add a single-line comment next to the property definition.

29 Custom Help and Documentation

29-6

Comments above the definition have precedence over a comment next to the definition.

For example, modify the property definitions in the class definition file myClass.m.

 properties

 a % First property of myClass

 % b - Second property of myClass

 % The description for b has several

 % lines of text.

 b % Other comment

 end

View the help for properties in the Command Window using the help command. Specify
both the class name and property name, separated by a dot.

help myClass.a

 a - First property of myClass

help myClass.b

 b - Second property of myClass

 The description for b has several

 lines of text.

Enumerations

Like properties, there are two ways to create help for enumerations:

• Insert comment lines above the enumeration definition. Use this approach for
multiline help text.

• Add a single-line comment next to the enumeration definition.

Comments above the definition have precedence over a comment next to the definition.

For example, create an enumeration class in a file named myEnumeration.m.

classdef myEnumeration

 enumeration

 uno, % First enumeration

 % DOS - Second enumeration

 % The description for DOS has several

 % lines of text.

 Create Help for Classes

29-7

 dos % A comment (not help text)

 end

end

View the help in the Command Window using the help command. Specify both the class
name and enumeration member, separated by a dot.

help myEnumeration.uno

uno - First enumeration

help myEnumeration.dos

 dos - Second enumeration

 The description for dos has several

 lines of text.

Events

Like properties and enumerations, there are two ways to create help for events:

• Insert comment lines above the event definition. Use this approach for multiline help
text.

• Add a single-line comment next to the event definition.

Comments above the definition have precedence over a comment next to the definition.

For example, create a class in a file named hasEvents.m.

classdef hasEvents < handle

 events

 Alpha % First event

 % Beta - Second event

 % Additional text about second event.

 Beta % (not help text)

 end

 methods

 function fireEventAlpha(h)

 notify(h,'Alpha')

 end

 function fireEventBeta(h)

 notify(h,'Beta')

29 Custom Help and Documentation

29-8

 end

 end

end

View the help in the Command Window using the help command. Specify both the class
name and event, separated by a dot.

help hasEvents.Alpha

 Alpha - First event

help hasEvents.Beta

 Beta - Second event

 Additional text about second event.

See Also
doc | help

More About
• “Role of Classes in MATLAB”
• “User-Defined Classes”

 Check Which Programs Have Help

29-9

Check Which Programs Have Help

To determine which of your programs files have help text, you can use the Help Report.

In the Help Report, you specify a set of help components for which you want to search,
such as examples or See Also lines. For each file searched, MATLAB displays the help
text for the components it finds. Otherwise, MATLAB displays a highlighted message to
indicate that the component is missing.

Note: MATLAB does not support creating Help Reports for live scripts. When creating
a report for all files in a folder, all live script in the selected folder are excluded from the
report.

To generate a Help Report, in the Current Folder browser, navigate to the folder you
want to check, click , and then select Reports > Help Report. The Help Report
displays in the MATLAB web browser.

29 Custom Help and Documentation

29-10

Note: You cannot run reports when the path is a UNC (Universal Naming Convention)
path; that is, a path that starts with \\. Instead, use an actual hard drive on your
system, or a mapped network drive.

This table describes the available options for Help Reports.

Help Report Option Description

Show class
methods

Include methods in the report. If you do not select this option,
then the report includes results for classes, but not for methods
within a class definition file.

Show all help Display all help text found in each file. If you also select
individual help components, such as Description, then help text
appears twice in the report for each file: once for the overall help
text, and once for the component.

 Check Which Programs Have Help

29-11

Help Report Option Description

If your program has the same name as other programs on the
MATLAB search path, then the help command generates a list
of those overloaded items. MATLAB automatically adds links to
the help for those items.

Description Check for an initial, nonempty comment line in the file. This line
is sometimes called the H1 line.

Examples Check for examples in the help text. The Help Report performs a
case-insensitive search for a help line with a single-word variant
of example. The report displays that line and subsequent
nonblank comment lines, along with the initial line number.

See Also Check for a line in the help that begins with the string See
also. The report displays the text and the initial line number.

If the programs listed after See also are on the search path,
then the help command generates hyperlinks to the help for
those programs. The Help Report indicates when a program in
the See also line is not on the path.

Copyright Check for a comment line in the file that begins with the string
Copyright. When there is a copyright line, the report also
checks whether the end year is current. The date check requires
that the copyright line includes either a single year (such as
2012) or a range of years with no spaces (such as 2001-2012).

The recommended practice is to include a range of years from the
year you created the file to the current year.

Related Examples
• “Add Help for Your Program” on page 19-5
• “Create Help Summary Files — Contents.m” on page 29-12

29 Custom Help and Documentation

29-12

Create Help Summary Files — Contents.m

In this section...

“What Is a Contents.m File?” on page 29-12
“Create a Contents.m File” on page 29-13
“Check an Existing Contents.m File” on page 29-13

What Is a Contents.m File?

A Contents.m file provides a summary of the programs in a particular folder. The help,
doc, and ver functions refer to Contents.m files to display information about folders.

Contents.m files contain only comment lines. The first two lines are headers that
describe the folder. Subsequent lines list the program files in the folder, along with
their descriptions. Optionally, you can group files and include category descriptions. For
example, view the functions available in the codetools folder:

help codetools

 Commands for creating and debugging code

 MATLAB Version 8.5 (R2015a) 02-Oct-2014

 Editing and publishing

 edit - Edit or create a file

 grabcode - Copy MATLAB code from published HTML

 mlint - Check files for possible problems

 notebook - Open MATLAB Notebook in Microsoft Word

 publish - Publish file containing cells to output file

 snapnow - Force snapshot of image for published document

 Directory tools

 mlintrpt - Run mlint for file or folder, reporting results in browser

 visdiff - Compare two files (text, MAT, or binary) or folders

 ...

If you do not want others to see a summary of your program files, place an empty
Contents.m file in the folder. An empty Contents.m file causes help foldername to
report No help found for foldername. Without a Contents.m file, the help and
doc commands display a generated list of all program files in the folder.

 Create Help Summary Files — Contents.m

29-13

Create a Contents.m File

When you have a set of existing program files in a folder, the easiest way to create a
Contents.m file is to use the Contents Report. The primary purpose of the Contents
Report is to check that an existing Contents.m file is up-to-date. However, it also checks
whether Contents.m exists, and can generate a new file based on the contents of the
folder. Follow these steps to create a file:

1 In the Current Folder browser, navigate to the folder that contains your program
files.

2 Click , and then select Reports > Contents Report.
3 In the report, where prompted to make a Contents.m file, click yes. The new file

includes the names of all program files in the folder, using the description line (the
first nonempty comment line) whenever it is available.

4 Open the generated file in the Editor, and modify the file so that the second comment
line is in this form:

 % Version xxx dd-mmm-yyyy

Do not include any spaces in the date. This comment line enables the ver function to
detect the version information.

Note: MATLAB does not include live scripts when creating a Contents Report.

Check an Existing Contents.m File

Verify whether your Contents.m file reflects the current contents of the folder using the
Contents Report, as follows:

1 In the Current Folder browser, navigate to the folder that contains the Contents.m
file.

2 Click , and then select Reports > Contents Report.

Note: You cannot run reports when the path is a UNC (Universal Naming Convention)
path; that is, a path that starts with \\. Instead, use an actual hard drive on your
system, or a mapped network drive.

29 Custom Help and Documentation

29-14

The Contents Report performs the following checks.

Check Whether the Contents.m File... Details

Exists If there is no Contents.m file in the folder,
you can create one from the report.

Includes all programs in the folder Missing programs appear in gray
highlights. You do not need to add
programs that you do not want to expose to
end users.

Incorrectly lists nonexistent files Listed programs that are not in the folder
appear in pink highlights.

Matches the program file descriptions The report compares file descriptions
in Contents.m with the first nonempty
comment line in the corresponding file.
Discrepancies appear in pink highlights.
You can update either the program file or
the Contents.m file.

Uses consistent spacing between file names
and descriptions

Fix the alignment by clicking fix spacing
at the top of the report.

You can make all the suggested changes by clicking fix all, or open the file in the Editor
by clicking edit Contents.m.

See Also
doc | help | ver

 Display Custom Documentation

29-15

Display Custom Documentation

In this section...

“Overview” on page 29-15
“Identify Your Documentation — info.xml” on page 29-16
“Create a Table of Contents — helptoc.xml” on page 29-18
“Build a Search Database” on page 29-20
“Address Validation Errors for info.xml Files” on page 29-21

Overview

If you create a toolbox that works with MathWorks products, even if it only contains a
few functions, you can include with it HTML documentation files. Providing HTML files
for your toolbox allows you to include figures, diagrams, screen captures, equations, and
formatting to make your toolbox help more usable.

To display custom documentation:

1 Create the HTML help files. Store these files in a common folder, such as an html
subfolder relative to your primary program files. This folder must be:

• On the MATLAB search path
• Outside the matlabroot folder
• Outside any installed Hardware Support Package help folder

Documentation sets often contain:

• A roadmap page (that is, an initial landing page for the documentation)
• Examples and topics that explain how to use the toolbox
• Function or block reference pages

You can create HTML files in any text editor or web publishing software. MATLAB
includes functionality to convert .m files to formatted HTML files. For more
information, see “Publishing MATLAB Code” on page 22-4.

2 Create an info.xml file, which enables MATLAB to find and identify your
documentation files.

29 Custom Help and Documentation

29-16

3 Create a helptoc.xml file, which creates a Table of Contents for your
documentation to display in the Contents pane of the Help browser. Store this file
in the folder that contains your HTML files.

4 Optionally, create a search database for your HTML help files using the
builddocsearchdb function.

5 View your documentation.

a In the Help browser, navigate to the home page.
b At the bottom right of the home page, under Supplemental Software, click the

link to your help.

Your help opens in the current window.

Identify Your Documentation — info.xml

The info.xml file specifies the name to display for your documentation set. It also
identifies where to find your HTML help files and the helptoc.xml file. Create a file
named info.xml for each toolbox you document.

The following listing is a template for info.xml that you can adapt to describe your
toolbox:
<productinfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="optional">

 <?xml-stylesheet type="text/xsl"href="optional"?>

 Display Custom Documentation

29-17

 <matlabrelease>2015a</matlabrelease>

 <name>MyToolbox</name>

 <type>toolbox</type>

 <icon></icon>

 <help_location>html</help_location>

</productinfo>

The following table describes required elements of the info.xml file.

XML Tag Description Value in Template Notes

<matlabrelease> Release of
MATLAB

R2015a Not displayed in the browser,
but indicates when you added
help files.

<name> Title of toolbox MyToolbox The name of your toolbox
that appears in the browser
Contents pane.

<type> Label for the
toolbox

toolbox Allowable values: matlab,
toolbox, simulink, blockset,
links_targets, other.

<icon> Icon for the
Start button
(removed)

 No longer used, but the <icon>
element is required to parse the
info.xml file.

<help_location> Location of help
files

html Name of subfolder containing
helptoc.xml and HTML
help files you provide for your
toolbox. If the help location
is not a subfolder, specify
the path to help_location
relative to the info.xml file.
If you provide HTML help files
for multiple toolboxes, each
help_location must be a
different folder.

<help_contents_icon> Icon to display
in Contents
pane

$toolbox/matlab/

icons/

bookicon.gif

Ignored in MATLAB R2015a
and later. If it appears
in the info.xml file, the
<help_contents_icon>

element does not cause errors.

29 Custom Help and Documentation

29-18

When you define the info.xml file, make sure that:

• You include all required elements.
• The entries are in the same order as in the preceding list.
• File and folder names in the XML exactly match the names of your files and folders

and use upper and lowercase letters identically.
• The info.xml file is in a folder on the MATLAB search path.

Note: MATLAB parses the info.xml file and displays your documentation when you
add the folder that contains info.xml to the path. If you created an info.xml file
in a folder already on the path, remove the folder from the path. Then add the folder
again, so that MATLAB parses the file. Make sure that the folder you are adding is
not your current folder.

You can include comments in your info.xml file, such as copyright and contact
information. Create comments by enclosing the text on a line with between <!-- and --
> markup.

Create a Table of Contents — helptoc.xml

The helptoc.xml file defines a hierarchy of entries within the Contents pane of
the Supplemental Software browser. Each <tocitem> entry in the helptoc.xml file
references one of your HTML help files.

Place the helptoc.xml file in the folder that contains your HTML documentation files.
This folder is designated as <help_location> in your info.xml file.

For example, suppose that you have created the following HTML files:

• A roadmap or starting page for your toolbox, mytoolbox.html.
• A page that lists your functions, funclist.html.
• Three function reference pages: firstfx.html, secondfx.html, and

thirdfx.html.
• An example, myexample.html.

Include file names and descriptions in a helptoc.xml file as follows:
<?xml version='1.0' encoding="utf-8"?>

<toc version="2.0">

 Display Custom Documentation

29-19

 <tocitem target="mytoolbox.html">My Toolbox

 <tocitem target="funclist.html">Functions

 <tocitem target="firstfx.html">first</tocitem>

 <tocitem target="secondfx.html">second</tocitem>

 <tocitem target="thirdfx.html">third</tocitem>

 </tocitem>

 <tocitem target="myexample.html">My Example

 </tocitem>

 </tocitem>

</toc>

Within the top-level <toc> element, the nested <tocitem> elements define the
structure of your table of contents. Each <tocitem> element has a target attribute
that provides the file name. Be sure that file and path names exactly match the names of
the files and folders, including upper- and lowercase letters.

The elements in the previous helptoc.xml and info.xml files correspond to the
following display in the browser.

If your HTML pages include anchor elements, you can refer to an anchor in the
target attribute of a <tocitem> element. In HTML files, anchors are of the form
Any content. In the helptoc.xml file, you can create a
link to that anchor using a pound sign (#), such as

29 Custom Help and Documentation

29-20

<tocitem target="mypage.html#anchorid">Descripive text</tocitem>

Template for helptoc.xml

A complete template for helptoc.xml files is located in an examples folder included
with the MATLAB documentation. The template includes <tocitem> elements for all
standard content types, such as Getting Started, User Guide, and Release Notes. To copy
the template file, helptoc_template.xml, to your current folder and edit the copy,
click here or run the following code:
copyfile(fullfile(matlabroot,'help','techdoc','matlab_env', ...

 'examples','templates','helptoc_template.xml'),pwd), ...

fileattrib('helptoc_template.xml','+w')

edit('helptoc_template.xml')

Build a Search Database

To support searches of your documentation, create a search database, also referred to
as a search index, using the builddocsearchdb function. When using this function,
specify the complete path to the folder that contains your HTML files.

For example, suppose that your HTML files are in C:\MATLAB\MyToolbox\html. This
command creates a searchable database:

builddocsearchdb('C:\MATLAB\MyToolbox\html')

builddocsearchdb creates a subfolder of C:\MATLAB\MyToolbox\html named
helpsearch-v3, which contains the database files.

You can search for terms in your toolbox from the Search Documentation field.

Beginning with MATLAB R2014b, you can maintain search indexes side by side.
For instance, if you already have a search index for MATLAB R2014a or earlier, run

 Display Custom Documentation

29-21

builddocsearchdb against your help files using MATLAB R2014b. Then, when you
run any MATLAB release, the help browser automatically uses the appropriate index for
searching your documentation database.

Address Validation Errors for info.xml Files

• “About XML File Validation” on page 29-21
• “Entities Missing or Out of Order in info.xml” on page 29-21
• “Unrelated info.xml File” on page 29-21
• “Invalid Constructs in info.xml File” on page 29-22
• “Outdated info.xml File for a MathWorks Product” on page 29-22

About XML File Validation

When MATLAB finds an info.xml file on the search path or in the current folder, it
automatically validates the file against the supported schema. If there is an invalid
construct in the info.xml file, MATLAB displays an error in the Command Window.
The error is typically of the form:

Warning: File <yourxmlfile.xml> did not validate.

...

An info.xml validation error can occur when you start MATLAB or add folders to the
search path.

The following sections describe the primary causes of an XML file validation error and
information to address them.

Entities Missing or Out of Order in info.xml

If you do not list required XML elements in the prescribed order, you receive an XML
validation error:
Often, errors result from incorrect ordering of XML tags. Correct the error by updating

the info.xml file contents to follow the guidelines in the MATLAB help documentation.

For a description of the elements you need in an info.xml file and their required
ordering, see “Identify Your Documentation — info.xml” on page 29-16.

Unrelated info.xml File

Suppose that you have a file named info.xml that has nothing to do with custom
documentation. Because this info.xml file is an unrelated file, if the file causes an

29 Custom Help and Documentation

29-22

error, the validation error is irrelevant. In this case, the error is not actually causing any
problems, so you can safely ignore it. To prevent the error message from reoccurring,
rename the offending info.xml file. Alternatively, ensure that the file is not on the
search path or in the current folder.

Invalid Constructs in info.xml File

If the purpose of the info.xml file is to display custom documentation, correct the
reported problem. Use the message in the error to isolate the problem or use any xml
schema validator. For more information about the structure of the info.xml file, consult
its schema, at matlabroot/sys/namespace/info/v1/info.xsd.

Outdated info.xml File for a MathWorks Product

If you have an info.xml file from a different version of MATLAB, that file could
contain constructs that are not valid with your version. To identify an info.xml file
from another version, look at the full path names reported in the error message. The
path usually includes a version number, for example, ...\MATLAB\R14\.... In this
situation, the error is not actually causing any problems, so you can safely ignore the
error message. To ensure that the error does not reoccur, remove the offending info.xml
file. Alternatively, ensure that the file is not on the search path or in the current folder.

 Display Custom Examples

29-23

Display Custom Examples

In this section...

“How to Display Examples” on page 29-23
“Elements of the demos.xml File” on page 29-24

How to Display Examples

To display examples such as videos, published program scripts, or other files that
illustrate the use of your programs in the MATLAB help browser, follow these steps:

1 Create your example files. Store the files in a folder that is on the MATLAB search
path, but outside the matlabroot folder.

Tip MATLAB includes a publishing feature that converts scripts or functions to
formatted HTML files, which you can display as examples. For information about
creating these HTML files, see “Publishing MATLAB Code” on page 22-4.

2 Create a demos.xml file that describes the name, type, and display information for
your examples.

For example, suppose that you have a toolbox named My Sample, which contains a
script named my_example that you published to HTML. This demos.xml file allows
you to display my_example:
<?xml version="1.0" encoding="utf-8"?>

<demos>

 <name>My Sample</name>

 <type>toolbox</type>

 <icon>HelpIcon.DEMOS</icon>

 <description>This text appears on the main page for your examples.</description>

 <website>Link to your Web site</website>

 <demosection>

 <label>First Section</label>

 <demoitem>

 <label>My Example Title</label>

 <type>M-file</type>

 <source>my_example</source>

 </demoitem>

 </demosection>

</demos>

29 Custom Help and Documentation

29-24

Note: <demosection> elements are optional.
3 View your examples.

a In the Help browser, navigate to the home page.
b At the bottom of the page, under Supplemental Software click the link for

your example.

Your example opens in the main help window.

Elements of the demos.xml File

• “General Information in <demos>” on page 29-24
• “Categories Using <demosection>” on page 29-25
• “Information About Each Example in <demoitem>” on page 29-25

General Information in <demos>

Within the demos.xml file, the root tag is <demos>. This tag includes elements that
determine the contents of the main page for your examples.

XML Tag Notes

<name> Name of your toolbox or collection of examples.
<type> Possible values are matlab, simulink, toolbox, or

blockset.
<icon> Ignored in MATLAB R2015a and later.

In previous releases, this icon was the icon for your
example. In those releases, you can use a standard icon,
HelpIcon.DEMOS. Or, you can provide a custom icon by
specifying a path to the icon relative to the location of the
demos.xml file.

<description> The description that appears on the main page for your
examples.

<website> (Optional) Link to a website. For example, MathWorks
examples include a link to the product page at http://
www.mathworks.com.

 Display Custom Examples

29-25

Categories Using <demosection>

Optionally, define categories for your examples by including a <demosection> for each
category. If you include any categories, then all examples must be in categories.

Each <demosection> element contains a <label> that provides the category name, and
the associated <demoitem> elements.

Information About Each Example in <demoitem>

XML Tag Notes

<label> Defines the title to display in the browser.
<type> Possible values are M-file, model, M-GUI, video, or other.

Typically, if you published your example using the publish
function, the appropriate <type> is M-file.

<source> If <type> is M-file, model, M-GUI, then <source> is
the name of the associated .m file or model file, with no
extension. Otherwise, do not include a <source> element,
but include a <callback> element.

<file> Use this element only for examples with a <type> value
other than M-file when you want to display an HTML file
that describes the example. Specify a relative path from the
location of demos.xml.

<callback> Use this element only for examples with a <type> value of
video or other to specify an executable file or a MATLAB
command to run the example.

<dependency> (Optional) Specifies other products required to run the
example, such as another toolbox. The text must match a
product name specified in an info.xml file that is on the
search path or in the current folder.

30

Source Control Interface

The source control interface provides access to your source control system from the
MATLAB desktop.

• “About MathWorks Source Control Integration” on page 30-3
• “Select or Disable Source Control System” on page 30-6
• “Create New Repository” on page 30-7
• “Review Changes in Source Control” on page 30-9
• “Mark Files for Addition to Source Control” on page 30-10
• “Resolve Source Control Conflicts” on page 30-11
• “Commit Modified Files to Source Control” on page 30-15
• “Revert Changes in Source Control” on page 30-17
• “Set Up SVN Source Control” on page 30-18
• “Check Out from SVN Repository” on page 30-24
• “Update SVN File Status and Revision” on page 30-28
• “Get SVN File Locks” on page 30-29
• “Set Up Git Source Control” on page 30-30
• “Clone from Git Repository” on page 30-34
• “Update Git File Status and Revision” on page 30-36
• “Branch and Merge with Git” on page 30-37
• “Push and Fetch with Git” on page 30-41
• “Move, Rename, or Delete Files Under Source Control” on page 30-44
• “MSSCCI Source Control Interface” on page 30-45
• “Set Up MSSCCI Source Control” on page 30-46
• “Check Files In and Out from MSSCCI Source Control” on page 30-53
• “Additional MSSCCI Source Control Actions” on page 30-56
• “Access MSSCCI Source Control from Editors” on page 30-63

30 Source Control Interface

30-2

• “Troubleshoot MSSCCI Source Control Problems” on page 30-64

 About MathWorks Source Control Integration

30-3

About MathWorks Source Control Integration

You can use MATLAB to work with files under source control. You can perform
operations such as update, commit, merge changes, and view revision history directly
from the Current Folder browser.

MATLAB integrates with:

• Subversion® (SVN)
• Git™

To use source control in your project, use any of these workflows:

• Retrieve files from an existing repository. See “Check Out from SVN Repository” on
page 30-24 or “Clone from Git Repository” on page 30-34.

• Add source control to a folder. See “Create New Repository” on page 30-7.
• Add new files in a folder already under source control. See “Mark Files for Addition to

Source Control” on page 30-10.

Additional source control integrations, such as Microsoft Source-Code Control Interface
(MSSCCI), are available for download from the Add-On Explorer. For more information,
see “Get Add-Ons”.

Classic and Distributed Source Control

This diagram represents the classic source control workflow (for example, using SVN).

30 Source Control Interface

30-4

Benefits of classic source control:

• Locking and user permissions on a per-file basis (e.g., you can enforce locking of model
files)

• Central server, reducing local storage needs
• Simple and easy to learn

This diagram represents the distributed source control workflow (for example, using Git).

Benefits of distributed source control:

• Offline working
• Local repository, which provides full history
• Branching
• Multiple remote repositories, enabling large-scale hierarchical access control

To choose classic or distributed source control, consider these tips.

Classic source control can be helpful if:

• You need file locks.
• You are new to source control.

 About MathWorks Source Control Integration

30-5

Distributed source control can be helpful if:

• You need to work offline, commit regularly, and need access to the full repository
history.

• You need to branch locally.

30 Source Control Interface

30-6

Select or Disable Source Control System

Select Source Control System

If you are just starting to use source control in MATLAB, select a source control system
that is part of the MathWorks source control integration with the Current Folder
browser, such as Subversion or Git. Doing so enables you to take advantage of the built-
in nature of the integration. MathWorks source control integration is on by default.

1 On the Home tab, in the Environment section, click Preferences.
2 In the preferences dialog box, navigate to the MATLAB > General > Source

Control pane.
3 To use the MathWorks source control integration, which is accessible through the

Current Folder browser, select Enable MathWorks source control integration.
Use this option for source control systems such as Subversion and Git. This is the
default option, unless you previously set up source control with MATLAB.

Disable Source Control

When you disable source control, MATLAB does not destroy repository information. For
example, it does not remove the .svn folder. You can put the folder back under source
control by enabling the source control integration again.

1 On the Home tab, in the Environment section, click Preferences.
2 In the Preferences dialog box, in the MATLAB > General > Source Control pane,

select None.

 Create New Repository

30-7

Create New Repository

You can use MATLAB to add source control to files in a folder. If you want to add version
control to your files without sharing with another user, it is quickest to create a local Git
repository in your sandbox.

To use a Git server for your remote repository, you can set up your own Apache™ Git
server or use a Git server hosting solution. If you cannot set up a server and must use a
remote repository via the file system using the file:/// protocol, make sure that it is a
bare repository with no checked out working copy.

For SVN, check that your sandbox folder is on a local hard disk. Using a network folder
with SVN is slow and unreliable.

Before using source control, you must register binary files with your source control tools
to avoid corruption. See “Register Binary Files with SVN” on page 30-19 or “Register
Binary Files with Git” on page 30-32.

Tip To check out an existing SVN repository, see “Check Out from SVN Repository”
on page 30-24. To clone an existing remote Git repository, see “Clone from Git
Repository” on page 30-34.

1 Right-click in the white space (any blank area) of the MATLAB Current Folder
browser. Select Source Control > Manage Files.

2 In the Manage Files Using Source Control dialog box, in the Source control
integration list:

• For an SVN repository, select Built-In SVN Integration.
• For a Git repository, select Git.

3 Click the Change button to open the Specify SVN Repository URL dialog box if you
are using SVN or the Select a Repository dialog box if you are using Git.

4 Click the Create a repository button to create a repository on disk.
5 Select an empty folder or create a new folder in which you want to create the

repository and click Select Folder to create the repository.

For SVN, the URL of the new repository is in the Repository URL box, and the
trunk folder is selected. Specify file:// URLs and create new repositories for

30 Source Control Interface

30-8

single users only. For multiple users, see “Share a Subversion Repository” on page
30-23.

6 In the Specify SVN Repository URL (SVN) or Select a Repository (Git), click
Validate to check the path to the selected repository, and then click OK.

If your SVN repository has a file URL, a warning appears that file URLs are for
single users. Click OK to continue.

7 In the Manage Files Using Source Control dialog box, choose the location for your
sandbox, and then click Retrieve.

For an SVN sandbox, the selected folder can contain files. However, for a Git
sandbox, the selected folder must be empty. You cannot clone a remote repository
into a folder that contains files.

You need some additional setup steps if you want to merge branches with Git. See
“Install Command-Line Git Client” on page 30-31.

After integrity checks are complete, you can commit the first version of your files to the
new repository.

Related Examples
• “Set Up SVN Source Control” on page 30-18
• “Set Up Git Source Control” on page 30-30
• “Check Out from SVN Repository” on page 30-24
• “Clone from Git Repository” on page 30-34
• “Commit Modified Files to Source Control” on page 30-15

 Review Changes in Source Control

30-9

Review Changes in Source Control

The files under source control that you have changed display the Modified File symbol
in the Current Folder browser. Right-click the file in the Current Folder browser, select
Source Control, and select:

• Show Revisions to open the File Revisions dialog box and browse the history of a
file. You can view information about who previously committed the file, when they
committed it, and the log messages. You can select multiple files and view revision
history for each file.

• Compare to Revision to open a dialog box where you can select the revisions you
want to compare and view a comparison report. You can either:

• Select a revision and click Compare to Local.
• Select two revisions and click Compare Selected.

• Compare to Ancestor to run a comparison with the last checked-out version in the
sandbox (SVN) or against the local repository (Git). The Comparison Tool displays a
report.

If you need to update the status of the modified files, see “Update SVN File Status and
Revision” on page 30-28 or “Update Git File Status and Revision” on page 30-36.

Related Examples
• “Resolve Source Control Conflicts” on page 30-11
• “Commit Modified Files to Source Control” on page 30-15
• “Revert Changes in Source Control” on page 30-17

30 Source Control Interface

30-10

Mark Files for Addition to Source Control

When you create a new file in a folder under source control, the Not Under Source
Control symbol appears in the status column of the Current Folder browser. To add
a file to source control, right-click the file in the Current Folder browser, and select
Source Control and then the Add option appropriate to your source control system. For
example, select Add to Git or Add to SVN.

When the file is marked for addition to source control, the symbol changes to Added .

 Resolve Source Control Conflicts

30-11

Resolve Source Control Conflicts

Examining and Resolving Conflicts

If you and another user change the same file in different sandboxes or on different
branches, a conflict message appears when you try to commit your modified files.
Follow the procedure “Resolve Conflicts” on page 30-11 to extract conflict markers if
necessary, compare the differences causing the conflict, and resolve the conflict.

To resolve conflicts you can:

• Use the Comparison Tool to merge changes between revisions.
• Decide to overwrite one set of changes with the other.
• Make changes manually by editing files.

For details on using the Comparison Tool to merge changes, see “Merge Text Files” on
page 30-12.

After you are satisfied with the file that is marked conflicted, you can mark the conflict
resolved and commit the file.

Resolve Conflicts

1 Look for conflicted files in the Current Folder browser.
2 Check the source control status column (SVN or Git) for files with a red warning

symbol , which indicates a conflict.
3 Right-click the conflicted file and select Source Control > View Conflicts to

compare versions.
4 Examine the conflict. A comparison report opens that shows the differences between

the conflicted files.

With SVN, the comparison shows the differences between the file and the version of
the file in conflict.

With Git, the comparison shows the differences between the file on your branch and
the branch you want to merge into.

5 Use the Comparison Tool report to determine how to resolve the conflict.

30 Source Control Interface

30-12

You can use the Comparison Tool to merge changes between revisions, as described
in “Merge Text Files” on page 30-12.

6 When you have resolved the changes and want to commit the version in your
sandbox, in the Current Folder browser, right-click the file and select Source
Control > Mark Conflict Resolved.

With Git, the Branch status in the Source Control Details dialog box changes from
MERGING to SAFE.

7 Commit the modified files.

Merge Text Files

When comparing text files, you can merge changes from one file to the other. Merging
changes is useful when resolving conflicts between different versions of files.

If you see conflict markers in a text comparison report like this:

<<<<<<< .mine

then extract the conflict markers before merging, as described in “Extract Conflict
Markers” on page 30-13.

Tip When comparing a file to another version in source control, by default the right file
is the version in your sandbox and the left file is either a temporary copy of the previous
version or another version causing a conflict (e.g., filename_theirs). You can swap the
position of the files, so be sure to observe the file paths of the left and right file at the top
of the comparison report. Merge differences from the temporary copy to the version in
your sandbox to resolve conflicts.

1 In the Comparison Tool report, select a difference in the report and click Merge. The
selected difference is copied from the left file to the right file.

Merged differences display gray row highlighting and a green merge arrow.

The merged file name at the top of the report displays with an asterisk
(filename.m*) to show you that the file contains unsaved changes.

 Resolve Source Control Conflicts

30-13

2 Click Save Merged File to save the file in your sandbox. To resolve conflicts, save
the merged file over the conflicted file.

3 If you want to inspect the files in the editor, click the line number links in the report.

Note: If you make any further changes in the editor, the comparison report does not
update to reflect changes and report links can become incorrect.

4 When you have resolved the changes mark them as conflict resolved. Right-click the
file in the Current Folder browser and select Source Control > Mark Conflict
Resolved.

Extract Conflict Markers

• “What Are Conflict Markers?” on page 30-13
• “Extract Conflict Markers” on page 30-14

What Are Conflict Markers?

Source control tools can insert conflict markers in files that you have not registered as
binary (e.g., text files). You can use MATLAB to extract the conflict markers and compare
the files causing the conflict. This process helps you to decide how to resolve the conflict.

Caution Register files with source control tools to prevent them from inserting conflict
markers and corrupting files. See “Register Binary Files with SVN” on page 30-19 or
“Register Binary Files with Git” on page 30-32. If your files already contains conflict
markers, the MATLAB tools can help you to resolve the conflict.

Conflict markers have the following form:

<<<<<<<["mine" file descriptor]

["mine" file content]

=======

["theirs" file content]

<<<<<<<["theirs" file descriptor]

If you try to open a file containing conflict markers, the Conflict Markers Found dialog
box opens. Follow the prompts to fix the file by extracting the conflict markers. After
you extract the conflict markers, resolve the conflicts as described in “Examining and
Resolving Conflicts” on page 30-11.

30 Source Control Interface

30-14

To view the conflict markers, in the Conflict Markers Found dialog box, click Load File.
Do not try to load files, because MATLAB does not recognize conflict markers. Instead,
click Fix File to extract the conflict markers.

MATLAB checks only conflicted files for conflict markers.

Extract Conflict Markers

When you open a conflicted file or select View Conflicts, MATLAB checks files for
conflict markers and offers to extract the conflict markers. MATLAB checks only
conflicted files for conflict markers.

However, some files that are not marked as conflicted can still contain conflict markers.
This can happen if you or another user marked a conflict resolved without removing the
conflict markers and then committed the file. If you see conflict markers in a file that is
not marked conflicted, you can extract the conflict markers.

1 In the Current Folder browser, right-click the file, and select Source Control >
Extract Conflict Markers to File.

2 In the Extract Conflict Markers to File dialog box, leave the default option to copy
“mine” file version over the conflicted file. Leave the Compare extracted files
check box selected. Click Extract.

3 Use the Comparison Tool report as usual to continue to resolve the conflict.

 Commit Modified Files to Source Control

30-15

Commit Modified Files to Source Control

Before you commit modified files, review changes and mark any new files for addition
into source control. The files under source control that you can commit to a repository
display the Added to Source Control symbol or the Modified File symbol in the
Current Folder browser.

1 If you are using SVN, in the Current Folder browser select the files you want to
commit. Right-click and select Source Control > Commit Selection to SVN
Repository. To commit all modified or added files, right-click in the Current Folder
browser and select Source Control > Commit All to SVN Repository. This
commits the changes to your repository.

If you are using Git, to commit all modified or added files to the repository, right-
click in the Current Folder browser, and select Source Control > Commit All to
Git Repository. This commits the changes to your local repository. To commit to the
remote repository, see “Push and Fetch with Git” on page 30-41.

If you are using Git and have installed a command-line Git client, you have the
option to commit select files to the Git repository. Select the files in the Current
Folder browser then right-click and select Source Control > Commit Selection to
Git Repository. For more information on command-line Git, see “Install Command-
Line Git Client” on page 30-31.

2 Enter comments in the dialog box, and click Submit.
3 A message appears if you cannot commit because the repository has moved ahead.

Before you can commit the file, you must update the revision up to the current
HEAD revision.

• If you are using SVN source control, right-click in the Current Folder browser.
Select Source Control > Update All from SVN.

• If you are using Git source control, right-click in the Current Folder browser.
Select Source Control > Fetch.

Resolve any conflicts before you commit.

Related Examples
• “Mark Files for Addition to Source Control” on page 30-10
• “Review Changes in Source Control” on page 30-9

30 Source Control Interface

30-16

• “Resolve Source Control Conflicts” on page 30-11
• “Update SVN File Status and Revision” on page 30-28
• “Update Git File Status and Revision” on page 30-36
• “Push and Fetch with Git” on page 30-41

 Revert Changes in Source Control

30-17

Revert Changes in Source Control

Revert Local Changes

With SVN, if you want to roll back local changes in a file, right-click the file and select
Source Control > Revert Local Changes and Release Locks. This command
releases locks and reverts to the version in the last sandbox update (that is, the last
version you synchronized or retrieved from the repository). If your file is not locked,
the menu option is Source Control > Revert Local Changes. To abandon all local
changes, select all the files in the Current Folder browser before you select the command.

With Git, right-click a file and select Source Control > Revert Local Changes. Git
does not have locks. To remove all local changes, right-click a blank space in the Current
Folder browser and select Source Control > Manage Branches. In the Manage
Branches dialog box, click Revert to Head.

Revert a File to a Specified Revision

1 Right-click a file in the Current Folder browser and select Source Control >
Revert using SVN or Revert using Git.

2 In the Revert Files dialog box, choose a revision to revert to. Select a revision to view
information about the change such as the author, date, and log message.

3 Click Revert.

If you revert a file to an earlier revision and then make changes, you cannot commit the
file until you resolve the conflict with the repository history.

Related Examples
• “Resolve Source Control Conflicts” on page 30-11

30 Source Control Interface

30-18

Set Up SVN Source Control

MATLAB provides built-in SVN integration for use with Subversion (SVN) sandboxes
and repositories. Because the implementation is built in to MATLAB, you do not need
to install SVN. The built-in SVN integration supports secure logins. This integration
ignores any existing SVN installation.

In this section...

“SVN Source Control Options” on page 30-18
“Register Binary Files with SVN” on page 30-19
“Standard Repository Structure” on page 30-22
“Tag Versions of Files” on page 30-22
“Enforce Locking Files Before Editing” on page 30-22
“Share a Subversion Repository” on page 30-23

SVN Source Control Options

To use the version of SVN provided with MATLAB, when you retrieve a file from source
control, select Built-In SVN Integration in the Source control integration list.
For instructions, see “Check Out from SVN Repository” on page 30-24. When you
create a new sandbox using the MATLAB built-in SVN integration, the new sandbox
uses the latest version of SVN provided by MATLAB.

Caution Before using source control, you must register binary files with the source control
tools to avoid corruption. See “Register Binary Files with SVN” on page 30-19.

If you need to use a version of SVN other than the built-in version, you can create a
repository using the Command-Line SVN Integration (compatibility mode)
Source control integration option, but you must also install a command-line SVN
client.

Command-line SVN integration communicates with any Subversion (SVN) client
that supports the command-line interface. With Command-Line SVN Integration
(compatibility mode), if you try to rename a file or folder to a name that contains an
@ character, an error occurs because command-line SVN treats all characters after the @
symbol as a peg revision value.

 Set Up SVN Source Control

30-19

Register Binary Files with SVN

If you use third-party source control tools, you must register your MATLAB and
Simulink file extensions such as .mat, .mdl, and .slx as binary formats. If you do
not register the extensions, these tools can corrupt your files when you submit them by
changing end-of-line characters, expanding tokens, substituting keywords, or attempting
to automerge. Corruption can occur whether you use the source control tools outside of
MATLAB or if you try submitting files from MATLAB without first registering your file
formats.

Also check that other file extensions are registered as binary to avoid corruption at
check-in. Check and register files such as .mdlp, .slxp, .sldd, .p, MEX-files, .xlsx,
.jpg, .pdf, .docx, etc.

You must register binary files if you use any version of SVN, including the built-in SVN
integration provided by MATLAB. If you do not register your extensions as binary, SVN
might add annotations to conflicted MATLAB files and attempt automerge. To avoid this
problem when using SVN, register file extensions.

1 Locate your SVN config file. Look for the file in these locations:

• C:\Users\myusername\AppData\Roaming\Subversion\config or C:
\Documents and Settings\myusername\Application Data\Subversion

\config on Windows
• ~/.subversion on Linux or Mac OS X

2 If you do not find a config file, create a new one. See “Create SVN Config File” on
page 30-19.

3 If you find an existing config file, you have previously installed SVN. Edit the
config file. See “Update Existing SVN Config File” on page 30-20.

Create SVN Config File

1 If you do not find an SVN config file, create a text file containing these lines:

[miscellany]

enable-auto-props = yes

[auto-props]

*.mdl = svn:mime-type=application/octet-stream

*.mat = svn:mime-type=application/octet-stream

*.slx = svn:mime-type= application/octet-stream

30 Source Control Interface

30-20

2 Check for other file types you use that you also need to register as binary to avoid
corruption at check-in. Check for files such as .mat, .mdlp, .slxp, .p, MEX-files
(.mexa64, .mexmaci64, .mexw64), .xlsx, .jpg, .pdf, .docx, etc. Add a line to the
config file for each file type you need. Examples:

*.mdlp = svn:mime-type=application/octet-stream

*.slxp = svn:mime-type=application/octet-stream

*.sldd = svn:mime-type=application/octet-stream

*.p = svn:mime-type=application/octet-stream

*.mexa64 = svn:mime-type=application/octet-stream

*.mexw64 = svn:mime-type=application/octet-stream

*.mexmaci64 = svn:mime-type=application/octet-stream

*.xlsx = svn:mime-type=application/octet-stream

*.docx = svn:mime-type=application/octet-stream

*.pdf = svn:mime-type=application/octet-stream

*.jpg = svn:mime-type=application/octet-stream

*.png = svn:mime-type=application/octet-stream

3 Name the file config and save it in the appropriate location:

• C:\Users\myusername\AppData\Roaming\Subversion\config or C:
\Documents and Settings\myusername\Application Data\Subversion

\config on Windows
• ~/.subversion on Linux or Mac OS X.

After you create the SVN config file, SVN treats new files with these extensions as
binary. If you already have binary files in repositories, see “Register Files Already in
Repositories” on page 30-21.

Update Existing SVN Config File

If you find an existing config file, you have previously installed SVN. Edit the config
file to register files as binary.

1 Edit the config file in a text editor.
2 Locate the [miscellany] section, and verify the following line enables auto-props

with yes:

enable-auto-props = yes

Ensure that this line is not commented (that is, that it does not start with #). Config
files can contain example lines that are commented out. If there is a # character at
the beginning of the line, delete it.

 Set Up SVN Source Control

30-21

3 Locate the [auto-props] section. Ensure that [auto-props] is not commented. If
there is a # character at the beginning, delete it.

4 Add the following lines at the end of the [auto-props] section:

*.mdl = svn:mime-type= application/octet-stream

*.mat = svn:mime-type=application/octet-stream

*.slx = svn:mime-type= application/octet-stream

These lines prevent SVN from adding annotations to MATLAB and Simulink files on
conflict and from automerging.

5 Check for other file types you use that you also need to register as binary to
avoid corruption at check-in. Check for files such as .mdlp, .slxp, .p, MEX-files
(.mexa64, .mexmaci64, .mexw64), .xlsx, .jpg, .pdf, .docx, etc. Add a line to the
config file for each file type you use. Examples:

*.mdlp = svn:mime-type=application/octet-stream

*.slxp = svn:mime-type=application/octet-stream

*.sldd = svn:mime-type=application/octet-stream

*.p = svn:mime-type=application/octet-stream

*.mexa64 = svn:mime-type=application/octet-stream

*.mexw64 = svn:mime-type=application/octet-stream

*.mexmaci64 = svn:mime-type=application/octet-stream

*.xlsx = svn:mime-type=application/octet-stream

*.docx = svn:mime-type=application/octet-stream

*.pdf = svn:mime-type=application/octet-stream

*.jpg = svn:mime-type=application/octet-stream

*.png = svn:mime-type=application/octet-stream

6 Save the config file.

After you create or update the SVN config file, SVN treats new files as binary. If you
already have files in repositories, register them as described in “Register Files Already in
Repositories” on page 30-21.

Register Files Already in Repositories

Caution Changing your SVN config file does not affect files already committed to an
SVN repository. If a file is not registered as binary, use svn propset to manually
register the files as binary.

To manually register a file in a repository as binary, use the following command with
command-line SVN:

30 Source Control Interface

30-22

svn propset svn:mime-type application/octet-stream binaryfilename

Standard Repository Structure

Create your repository with the standard tags, trunk, and branches folders, and check
out files from trunk. The Subversion project recommends this structure. See the Web
page:

http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

If you use MATLAB to create an SVN repository, it creates the standard repository
structure. To enable tagging, the repository must have the standard trunk/ and tags/
folders. After you create a repository with this structure, you can click Tag in the
Source Control context menu to add tags to all of your files. For more information, see
“Tag Versions of Files” on page 30-22.

Tag Versions of Files

With SVN, you can use tags to identify specific revisions of all files. To use tags with
SVN, you need the standard folder structure in your repository and you need to check out
your files from trunk. See “Standard Repository Structure” on page 30-22.

1 Right-click in the Current Folder browser, and select Source Control > Tag.
2 Specify the tag text and click Submit. The tag is added to every file in the folder.

Errors appear if you do not have a tags folder in your repository.

Note: You can retrieve a tagged version of your files from source control, but you cannot
tag them again with a new tag. You must check out from trunk to create new tags.

Enforce Locking Files Before Editing

To require that users remember to get a lock on files before editing, configure SVN to
make files with specified extensions read only. When your files are read only, you need to
select Right-click in the Current Folder browser, and select Source Control > Get File
Lock before you can edit them. This setting prevents editing of files without getting the
file lock. When the file has a lock, other users know the file is being edited, and you can
avoid merge issues.

http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

 Set Up SVN Source Control

30-23

1 To make files with a .m extension read only, add this property to your SVN config
file in the [auto-props] section:

*.m = svn:needs-lock=yes

To locate your SVN config file, see “Register Binary Files with SVN” on page
30-19.

2 Re-create the sandbox for the configuration to take effect.

With this setting, you need to select Get File Lock before you can edit files with a .m
extension. See “Get SVN File Locks” on page 30-29.

Share a Subversion Repository

You can specify a repository location using the file:// protocol. However, Subversion
documentation strongly recommends that only a single user access a repository directly
via file:// URLs. See the Web page:
http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.choosing.recommendations

Caution Do not allow multiple users to access a repository directly via file:// URLs or
you risk corrupting the repository. Use file:// URLs only for single-user repositories.

Be aware of this caution if you use MATLAB to create a repository. MATLAB uses the
file:// protocol. Creating new repositories is provided for local, single-user access only,
for testing and debugging. Accessing a repository via file:// URLs is slower than using
a server.

When you want to share a repository, you need to set up a server. You can use svnserve
or the Apache SVN module. See the Web page references:

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.svnserve

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.httpd

Related Examples
• “Check Out from SVN Repository” on page 30-24

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.choosing.recommendations
http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.svnserve
http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.httpd

30 Source Control Interface

30-24

Check Out from SVN Repository

Create a new local copy of a repository by retrieving files from source control.

1 Right-click in the white space (any blank area) in the Current Folder browser and
select Source Control > Manage Files.

2 In the Manage Files Using Source Control dialog box, select the source control
interface from the Source control integration list. To use SVN, leave the default
Built-In SVN Integration.

3 Click Change to browse for and validate the repository path. (If you know your
repository location, you can paste it into the Repository Path box and proceed to
step 8.)

4 In the Specify Repository URL dialog box, specify the repository URL by entering a
URL in the box, using the list of recent repositories, or by using the Generate URL

from folder button .

Caution Use file:// URLs only for single-user repositories. For more information,
see “Share a Subversion Repository” on page 30-23.

5 Click Validate to check the repository path.

If the path is invalid, check the URL against your source control repository browser.

 Check Out from SVN Repository

30-25

6 If you see an authentication dialog box for your repository, enter login information to
continue.

7 If necessary, select a deeper folder in the repository tree. You might want to
check out from trunk or from a branch folder under tags, if your repository
contains tagged versions of files. You can check out from a branch, but the built-
in SVN integration does not support branch merging. Use an external tool such as
TortoiseSVN to perform branch merging. The example shows trunk selected, and
the Selected URL displays at the bottom of the dialog box. The retriever uses this
URL when you click OK.

8 When you have finished specifying the URL path you want to retrieve, click OK.
9 In the Manage Files Using Source Control dialog box, select the sandbox folder

where you want to put the retrieved files, and click Retrieve.

Caution Use local sandbox folders. Using a network folder with SVN slows source
control operations.

30 Source Control Interface

30-26

The Manage Files Using Source Control dialog box displays messages as it retrieves
the files from source control.

Note: To update an existing sandbox from source control, see “Update SVN File Status
and Revision” on page 30-28.

Retrieve Tagged Version of Repository

To use tags with SVN, you need the standard folder structure in your repository. For
more information, see “Standard Repository Structure” on page 30-22.

1 Right-click in the white space in the Current Folder browser, and select Source
Control > Manage Files.

2 In the Manage Files Using Source Control dialog box, select the source control
interface from the Source control integration list. To use SVN, leave the default
Built-In SVN Integration.

 Check Out from SVN Repository

30-27

3 Click Change to select the Repository Path that you want to retrieve files from.
4 In the Specify Repository URL dialog box:

a Select a recent repository from the Repository URL list, or click the Generate

URL from folder button to browse for the repository location.
b Click Validate to show the repository browser.
c Expand the tags folder in the repository tree, and select the tag version you

want. Navigate up a level in the repository if the URL contains the trunk.
d Click OK to continue and return to the Manage Files Using Source Control

dialog box.
5 Select the sandbox folder to receive the tagged files. You must use an empty sandbox

folder or specify a new folder.
6 Click Retrieve.

Related Examples
• “Set Up SVN Source Control” on page 30-18
• “Update SVN File Status and Revision” on page 30-28

30 Source Control Interface

30-28

Update SVN File Status and Revision

In this section...

“Refresh Status of Files” on page 30-28
“Update Revisions of Files” on page 30-28

Refresh Status of Files

To refresh the source control status of files, select one or more files in the Current Folder
browser, right-click and select Source Control > Refresh SVN status.

To refresh the status of all files in a folder, right-click the white space of the Current
Folder browser and select Source Control > Refresh SVN status.

Note: For SVN, refreshing the source control status does not contact the repository. To
get the latest revisions, see “Update Revisions of Files” on page 30-28.

Update Revisions of Files

To update the local copies of selected files, select one or more files in the Current Folder
browser, right-click and select Source Control > Update Selection from SVN.

To update all files in a folder, right-click the Current Folder browser and select Source
Control > Update All from SVN.

Related Examples
• “Check Out from SVN Repository” on page 30-24
• “Review Changes in Source Control” on page 30-9

 Get SVN File Locks

30-29

Get SVN File Locks

It is good practice to get a file lock before editing a file. The lock tells other users that the
file is being edited, and you can avoid merge issues. When you set up source control, you
can configure SVN to make files with certain extensions read only. Users must get a lock
on these read-only files before editing.

In the Current Folder browser, select the files you want to check out. Right-click the

selected files and select Source Control > Get File Lock. A lock symbol appears
in the source control status column. Other users cannot see the lock symbol in their
sandboxes, but they cannot get a file lock or check in a change when you have the lock.

Related Examples
• “Enforce Locking Files Before Editing” on page 30-22

30 Source Control Interface

30-30

Set Up Git Source Control

In this section...

“About Git Source Control” on page 30-30
“Install Command-Line Git Client” on page 30-31
“Register Binary Files with Git” on page 30-32

About Git Source Control

Git integration with MATLAB provides distributed source control with support
for creating and merging branches. Git is a distributed source control tool, so you
can commit changes to a local repository and later synchronize with other remote
repositories.

Git supports distributed development because every sandbox contains a complete
repository. The full revision history of every file is saved locally. This enables working
offline, because you do not need to contact remote repositories for every local edit and
commit, only when pushing batches of changes. In addition, you can create your own
branches and commit local edits. Doing so is fast, and you do not need to merge with
other changes on each commit.

Capabilities of Git source control:

• Branch management
• Local full revision history
• Local access that is quicker than remote access
• Offline working
• Tracking of file names and contents separately
• Enforcing of change logs for tracing accountability
• Integration of batches of changes when ready

These capabilities do not suit every situation. If your project is not appropriate for offline
working or your repository is too large for a full local revision history, for example, Git
is not the ideal source control. In addition, if you need to enforce locking of files before
editing, Git does not have this ability. In that situation, SVN is the better choice.

When you use Git in MATLAB, you can:

 Set Up Git Source Control

30-31

• Create local Git repositories.
• Fetch files from remote Git repositories.
• Create and switch branches.
• Merge branches locally.
• Commit locally.
• Push files to remote Git repositories.

This diagram represents the distributed Git workflow.

Install Command-Line Git Client

If you want to use Git to merge branches in MATLAB, you must also install a command-
line Git client that is available systemwide. You can use other Git functionality without
any additional installation.

Some clients are not available systemwide, including the mingw32 environment provided
by GitHub® (Git Shell on the Start menu). Installing command-line Git makes it
available systemwide, and then MATLAB can locate standard ssh keys.

Check if Git is available by using the command !git in MATLAB. If Git is not available,
install it. After you have installed a command-line Git client and registered your files as
binary, you can use the merging features of Git in MATLAB.

30 Source Control Interface

30-32

On Windows:

1 Download the Git installer and run it. You can find command-line Git at:

http://msysgit.github.io/

2 In the section on adjusting your PATH, choose the install option to Use Git from the
Windows Command Prompt. This option adds Git to your PATH variable, so that
MATLAB can communicate with Git.

3 In the section on configuring the line-ending conversions, choose the option
Checkout as-is, commit as-is to avoid converting any line endings in files.

4 To avoid corrupting binary files, before using Git to merge branches, register the
binary files.

On Linux, Git is available for most distributions. Install Git for your distribution. For
example, on Debian®, install Git by entering:

sudo apt-get install git

On Mac, on Mavericks (10.9) or above, try to run git from the Terminal. If you do not
have Git installed already, it will prompt you to install Xcode Command Line Tools. For
more options, see http://git-scm.com/doc.

Register Binary Files with Git

If you use third-party source control tools, you must register your MATLAB and
Simulink file extensions such as .mat, .mdl, and .slx as binary formats. If you do
not register the extensions, these tools can corrupt your files when you submit them by
changing end-of-line characters, expanding tokens, substituting keywords, or attempting
to automerge. Corruption can occur whether you use the source control tools outside of
MATLAB or if you try submitting files from MATLAB without first registering your file
formats.

Also check that other file extensions are registered as binary to avoid corruption at
check-in. Check and register files such as .mdlp, .slxp, .sldd, .p, MEX-files, .xlsx,
.jpg, .pdf, .docx, etc.

After you install a command-line Git client, you can prevent Git from corrupting your
files by inserting conflict markers. To do so, edit your .gitattributes file to register
binary files. For details, see:

http://git-scm.com/docs/gitattributes

http://msysgit.github.io/
http://git-scm.com/doc
http://git-scm.com/docs/gitattributes

 Set Up Git Source Control

30-33

1 If you do not already have a .gitattributes file in your sandbox folder, create one
at the MATLAB command prompt:

edit .gitattributes

2 Add these lines to the .gitattributes file:

*.mat -crlf -diff –merge

*.p -crlf -diff –merge

*.slx -crlf -diff –merge

*.mdl -crlf -diff –merge

These lines specify not to try automatic line feed, diff, and merge attempts for these
types of files.

3 Check for other file types you use that you also need to register as binary to avoid
corruption at check-in. Check for files such as .mdlp, .slxp, MEX-files (.mexa64,
.mexmaci64, .mexw64), .xlsx, .jpg, .pdf, .docx, etc. Add a line to the attributes
file for each file type you need.

Examples:

*.mdlp -crlf -diff –merge

*.slxp -crlf -diff –merge

*.sldd -crlf -diff –merge

*.mexa64 -crlf -diff –merge

*.mexw64 -crlf -diff –merge

*.mexmaci64 -crlf -diff –merge

*.xlsx -crlf -diff –merge

*.docx -crlf -diff –merge

*.pdf -crlf -diff –merge

*.jpg -crlf -diff –merge

*.png -crlf -diff –merge

4 Restart MATLAB so you can start using the Git client.

Related Examples
• “Clone from Git Repository” on page 30-34

30 Source Control Interface

30-34

Clone from Git Repository

Clone a remote Git repository to retrieve repository files.

1 Right-click in the white space (any blank area) in the Current Folder browser, and
select Source Control > Manage Files.

2 In the Manage Files Using Source Control dialog box, select Git from the Source
control integration list.

3 Click Change to browse for and validate the repository path. (If you know your
repository location, you can paste it into the Repository Path box and proceed to
step 7.)

4 In the Select a Repository dialog box, specify the repository path by entering the
path in the box, using the list of recent repositories, or by using the Browse to a Git

repository on disk button .

5 Click Validate to check the repository path.

If the path is invalid, check it against your source control repository browser.
6 If you see an authentication dialog box for your repository, enter login information to

continue.
7 When you have finished specifying the path you want to retrieve, click OK.

 Clone from Git Repository

30-35

8 In the Manage Files Using Source Control dialog box, select the sandbox folder
where you want to put the retrieved files, and click Retrieve.

Troubleshooting

If you encounter errors like OutOfMemoryError: Java heap space, for example
when cloning big Git repositories, then edit your MATLAB preferences to increase the
heap size.

1 On the Home tab, in the Environment section, click Preferences.
2 Select MATLAB > General > Java Heap Memory.
3 Move the slider to increase the heap size, and then click OK.
4 Restart MATLAB.

Related Examples
• “Set Up Git Source Control” on page 30-30
• “Update Git File Status and Revision” on page 30-36
• “Branch and Merge with Git” on page 30-37

30 Source Control Interface

30-36

Update Git File Status and Revision

In this section...

“Refresh Status of Files” on page 30-36
“Update Revisions of Files” on page 30-36

Refresh Status of Files

To refresh the source control status of files, select one or more files in the Current Folder
browser, right-click and select Source Control > Refresh Git status.

To refresh the status of all files in the repository, right-click the white space of the
Current Folder browser and select Source Control > Refresh Git status.

Update Revisions of Files

To update all files in a repository, right-click in the Current Folder browser and select
Source Control > Fetch.

Caution Ensure you have registered binary files with Git before using Fetch. If you do
not, conflict markers can corrupt your files. For more information, see “Register Binary
Files with Git” on page 30-32.

After clicking Fetch, you need to merge in the origin changes to your local branches. For
next steps, see “Push and Fetch with Git” on page 30-41.

Related Examples
• “Clone from Git Repository” on page 30-34
• “Review Changes in Source Control” on page 30-9

 Branch and Merge with Git

30-37

Branch and Merge with Git

In this section...

“Create Branch” on page 30-37
“Switch Branch” on page 30-39
“Merge Branches” on page 30-39
“Revert to Head” on page 30-40
“Delete Branches” on page 30-40

Create Branch

1 From within your Git repository folder, right-click the white space of the Current
Folder browser and select Source Control > Manage Branches. In the Manage
Branches dialog box, you can view, switch, create, and merge branches.

Tip You can inspect information about each commit node. Select a node in the
Branch Browser diagram to view the author, date, commit message, and changed
files.

The Branch Browser in this figure shows an example branch history.

30 Source Control Interface

30-38

2 Select a source for the new branch. Click a node in the Branch Browser diagram,
or enter a unique identifier in the Source text box. You can enter a tag, branch
name, or a unique prefix of the SHA1 hash (for example, 73c637 to identify a
specific commit). Leave the default to create a branch from the head of the current
branch.

3 Enter a name in the Branch name text box and click Create.
4 To work on the files on your new branch, switch your project to the branch.

 Branch and Merge with Git

30-39

In the Branches drop-down list, select the branch you want to switch to and click
Switch.

5 Close the Manage Branches dialog box and work on the files on your branch.

For next steps, see “Push and Fetch with Git” on page 30-41.

Switch Branch

1 From within your Git repository folder, right-click the white space of the Current
Folder browser and select Source Control > Manage Branches.

2 In the Manage Branches dialog box, in the Branches drop-down list, select the
branch you want to and click Switch.

3 Close the Manage Branches dialog box and work on the files on your branch.

Merge Branches

Before you can merge branches, you must install command-line Git on your system path
and register binary files to prevent Git from inserting conflict markers. See “Install
Command-Line Git Client” on page 30-31.

Tip After you fetch changes, you must merge. For more information, see “Fetch and
Merge” on page 30-42.

To merge any branches:

1 From within your Git repository folder, right-click the white space of the Current
Folder browser and select Source Control and Manage Branches.

2 In the Manage Branches dialog box, from the Branches drop-down list, select a
branch you want to merge into the current branch, and click Merge.

3 Close the Manage Branches dialog box and work on the files on your branch.

If the branch merge causes a conflict that Git cannot resolve automatically, an error
dialog box reports that automatic merge failed. Resolve the conflicts before proceeding.

Caution Do not move or delete files outside of MATLAB because this can cause errors on
merge.

30 Source Control Interface

30-40

Keep Your Version

1 To keep your version of the file, right-click the file and select Mark Conflict
Resolved.

2 Click Commit Modified Files to commit your change that marks the conflict
resolved.

Compare Branch Versions

If you merge a branch and there is a conflict in a file, Git marks the file as conflicted and
does not modify the contents. Right-click the file and select Source Control > View
Conflicts. A comparison report opens that shows the differences between the file on your
branch and the branch you want to merge into. Decide how to resolve the conflict. See
“Resolve Source Control Conflicts” on page 30-11.

Revert to Head

1 From within your Git repository folder, right-click the white space of the Current
Folder browser and select Source Control > Manage Branches.

2 In the Manage Branches dialog box, click Revert to Head to remove all local
changes.

Delete Branches

1 In the Manage Branches dialog box under Branch Browser, expand the Branches
drop-down list, and select the branch you want to delete.

2 On the far right, click the down arrow and select Delete Branch.

Caution You cannot undo branch deletion.

Related Examples
• “Set Up Git Source Control” on page 30-30
• “Push and Fetch with Git” on page 30-41
• “Resolve Source Control Conflicts” on page 30-11

 Push and Fetch with Git

30-41

Push and Fetch with Git

Use this workflow to work with a remote repository. With Git, there is a two-step
workflow: commit local changes, and then push to the remote repository. In MATLAB,
the only access to the remote repository is through the Push and Fetch menu options.
All other actions, such as Compare to Ancestor and Commit, use the local repository.
This diagram represents the Git workflow.

Push

To commit all changes to the local repository, right-click the white space of the Current
Folder browser and select Source Control > Commit All to Git Repository. If you
have installed a command-line Git client, you can select Source Control > Commit
Selection to Git Repository.

To see if your local changes have moved ahead of the remote tracking branch, right-click
the file or white space of the Current Folder browser and select Source Control > View
Details. The Git information field indicates whether your committed local changes are
ahead of, behind, or coincident with the remote tracking branch.

To send local commits to the remote repository, right-click in the Current Folder browser
and select Source Control > Push. A message appears if you cannot push your changes
directly because the repository has moved on. Right-click in the Current Folder browser

30 Source Control Interface

30-42

and select Source Control > Fetch to fetch all changes from the remote repository.
Merge branches and resolve conflicts, and then you can push your changes.

Using Git, you cannot add empty folders to source control, so you cannot select Push
and then clone an empty folder. You can create an empty folder in MATLAB, but if you
push changes and then sync a new sandbox, then the empty folder does not appear in the
new sandbox. To push empty folders to the repository for other users to sync, create a
gitignore file in the folder and then push your changes.

Fetch and Merge

To fetch changes from the remote repository, right-click in the Current Folder browser
and select Source Control > Fetch. Fetch updates all of the origin branches in the local
repository. Your sandbox files do not change. To see others’ changes, you need to merge
in the origin changes to your local branches.

For information about your current branch relative to the remote tracking branch in the
repository, right-click the file or white space of the Current Folder browser and select
Source Control > View Details. The Git information field indicates whether your
committed local changes are ahead of, behind, or coincident with the remote tracking
branch. When you see the message Behind, you need to merge in changes from the
repository to your local branch.

For example, if you are on the master branch, get all changes from the master branch in
the remote repository.

1 Right-click in the Current Folder browser and select Source Control > Fetch
2 Right-click in the Current Folder browser and select Source Control > Manage

Branches.
3 In the Manage Branches dialog box, select origin/master in the Branches list.
4 Click Merge. The origin branch changes merge into the master branch in your

sandbox.

If you right-click the Current Folder browser and select Source Control > View
Details, the Git information field indicates Coincident with /origin/master.
You can now view the changes that you fetched and merged from the remote repository
in your local sandbox.

Related Examples
• “Branch and Merge with Git” on page 30-37

 Push and Fetch with Git

30-43

• “Resolve Source Control Conflicts” on page 30-11

30 Source Control Interface

30-44

Move, Rename, or Delete Files Under Source Control

Move, rename, or delete files using the MATLAB Source Control context menu options or
another source control client application.

To move a file under source control, right-click the file in the Current Folder browser,
select Source Control > Move, and enter a new file location.

To rename a file under source control, right-click the file in the Current Folder browser,
select Source Control > Rename, and enter a new file name.

To delete a file from the repository, mark the file for deletion.

• To mark a file for deletion from the repository and retain a local copy, right-click the
file in the Current Folder browser. Select Source Control and then Delete from
SVN or Delete from Git. When the file is marked for deletion from source control,
the symbol changes to Deleted . The file is removed from the repository at the next
commit.

• To mark a file for deletion from the repository and from your disk, right-click the
file in the Current Folder browser. Select Source Control and then Delete from
SVN and disk or Delete from Git and disk. The file disappears from the Current
Folder browser and is immediately deleted from your disk. The file is removed from
the repository at the next commit.

Related Examples
• “Mark Files for Addition to Source Control” on page 30-10
• “Commit Modified Files to Source Control” on page 30-15

 MSSCCI Source Control Interface

30-45

MSSCCI Source Control Interface

Note: MSSCCI support will be removed in a future release. Replace this functionality
with one of the following options.

• Use a source control system that is part of the MathWorks “Source Control
Integration” with the Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source
control.

• Use the MATLAB system function and the command-line API for your source control
tool to replicate existing functionality.

If you use source control systems to manage your files, you can interface with the
systems to perform source control actions from within the MATLAB, Simulink, and
Stateflow products. Use menu items in the MATLAB, Simulink, or Stateflow products,
or run functions in the MATLAB Command Window to interface with your source control
systems.

The source control interface on Windows works with any source control system that
conforms to the Microsoft Common Source Control standard, Version 1.1. If your source
control system does not conform to the standard, use a Microsoft Source Code Control
API wrapper product for your source control system so that you can interface with it from
the MATLAB, Simulink, and Stateflow products.

This documentation uses the Microsoft Visual SourceSafe® software as an example. Your
source control system might use different terminology and not support the same options
or might use them in a different way. Regardless, you should be able to perform similar
actions with your source control system based on this documentation.

Perform most source control interface actions from the Current Folder browser. You can
also perform many of these actions for a single file from the MATLAB Editor, a Simulink
model window, or a Stateflow chart window—for more information, see “Access MSSCCI
Source Control from Editors” on page 30-63.

30 Source Control Interface

30-46

Set Up MSSCCI Source Control

Note: MSSCCI support will be removed in a future release. Replace this functionality
with one of the following options.

• Use a source control system that is part of the MathWorks “Source Control
Integration” with the Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source
control.

• Use the MATLAB system function and the command-line API for your source control
tool to replicate existing functionality.

In this section...

“Create Projects in Source Control System” on page 30-46
“Specify Source Control System with MATLAB Software” on page 30-48
“Register Source Control Project with MATLAB Software” on page 30-49
“Add Files to Source Control” on page 30-51

Create Projects in Source Control System

In your source control system, create the projects that your folders and files will be
associated with.

All files in a folder must belong to the same source control project. Be sure the working
folder for the project in the source control system specifies the correct path to the folder
on disk.

Example of Creating Source Control Project

This example uses the project my_thesis_files in Microsoft Visual SourceSafe. This
illustration of the Current Folder browser shows the path to the folder on disk, D:
\my_thesis_files.

 Set Up MSSCCI Source Control

30-47

The following illustration shows the example project in the source control system.

30 Source Control Interface

30-48

To set the working folder in Microsoft Visual SourceSafe for this example, select
my_thesis_files, right-click, select Set Working Folder from the context menu, and
specify D:\my_thesis_files in the resulting dialog box.

Specify Source Control System with MATLAB Software

In MATLAB, specify the source control system you want to access. On the Home tab,
in the Environment section, click Preferences > MATLAB > General > Source
Control.

The currently selected system is shown in the Preferences dialog box. The list includes
all installed source control systems that support the Microsoft Common Source Control
standard.

Select the source control system you want to interface with and click OK.

 Set Up MSSCCI Source Control

30-49

MATLAB remembers preferences between sessions, so you only need to perform this
action again when you want to access a different source control system.

Source Control with 64-Bit Versions of MATLAB

If you run a 64-bit version of MATLAB and want MATLAB to interface with your source
control system, your source control system must be 64-bit compliant. If you have a 32-
bit source control system, or if you have a 64-bit source control system running in 32-bit
compatibility mode, MATLAB cannot use it. In that event, MATLAB displays a warning
about the problem in the Source Control preference pane.

Register Source Control Project with MATLAB Software

Register a source control system project with a folder in MATLAB, that is, associate a
source control system project with a folder and all files in that folder. Do this only one
time for any file in the folder, which registers all files in that folder:

1 In the MATLAB Current Folder browser, select a file that is in the folder you want
to associate with a project in your source control system. For example, select D:
\my_thesis_files\wind.m. This will associate all files in the my_thesis_files
folder.

2 Right-click, and from the context menu, select Source Control > Register
Name_of_Source_Control_System Project with MATLAB. The

30 Source Control Interface

30-50

Name_of_Source_Control_System is the source control system you selected using
preferences as described in “Specify Source Control System with MATLAB Software”
on page 30-48.

The following example shows Microsoft Visual SourceSafe.

3 In the resulting Name_of_Source_Control_System Login dialog box, provide the
user name and password you use to access your source control system, and click OK.

 Set Up MSSCCI Source Control

30-51

4 In the resulting Choose project from Name_of_Source_Control_System dialog
box, select the source control system project to associate with the folder and click
OK. This example shows my_thesis_files.

The selected file, its folder, and all files in the folder, are associated with the source
control system project you selected. For the example, MATLAB associates all files in
D:\my_thesis_files with the source control project my_thesis_files.

Add Files to Source Control

Add files to the source control system. Do this only once for each file:

1 In the Current Folder browser, select files you want to add to the source control
system.

2 Right-click, and from the context menu, select Source Control > Add to Source
Control.

30 Source Control Interface

30-52

3 The resulting Add to source control dialog box lists files you selected to add. You
can add text in the Comments field. If you expect to use the files soon, select the
Keep checked out check box (which is selected by default). Click OK.

If you try to add an unsaved file, the file is automatically saved upon adding.

 Check Files In and Out from MSSCCI Source Control

30-53

Check Files In and Out from MSSCCI Source Control

Note: MSSCCI support will be removed in a future release. Replace this functionality
with one of the following options.

• Use a source control system that is part of the MathWorks “Source Control
Integration” with the Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source
control.

• Use the MATLAB system function and the command-line API for your source control
tool to replicate existing functionality.

In this section...

“Check Files Into Source Control” on page 30-53
“Check Files Out of Source Control” on page 30-54
“Undoing the Checkout” on page 30-55

Before checking files into and out of your source control system from the MATLAB
desktop, be sure to set up your system for use with MATLAB as described in “Set Up
MSSCCI Source Control” on page 30-46.

Check Files Into Source Control

After creating or modifying files using MATLAB software or related products, check the
files into the source control system by performing these steps:

1 In the Current Folder browser, select the files to check in. A file can be open or
closed when you check it in, but it must be saved, that is, it cannot contain unsaved
changes.

2 Right-click, and from the context menu, select Source Control > Check In.
3 In the resulting Check in file(s) dialog box, you can add text in the Comments

field. If you want to continue working on the files, select the check box Keep
checked out. Click OK.

30 Source Control Interface

30-54

If a file contains unsaved changes when you try to check it in, you will be prompted to
save the changes to complete the checkin. If you did not keep the file checked out and you
keep the file open, note that it is a read-only version.

Check Files Out of Source Control

From MATLAB, to check out the files you want to modify, perform these steps:

1 In the Current Folder browser, select the files to check out.
2 Right-click, and from the context menu, select Source Control > Check Out.
3 The resulting Check out file(s) dialog box lists files you selected to check out. Enter

comment text in the Comments field, which appears if your source control system
supports comments on checkout. Click OK.

After checking out a file, make changes to it in MATLAB or another product, and save
the file. For example, edit a file in the Editor.

If you try to change a file without first having checked it out, the file is read-only, as
seen in the title bar, and you will not be able to save any changes. This protects you from
accidentally overwriting the source control version of the file.

If you end the MATLAB session, the file remains checked out. You can check in the file
from within MATLAB during a later session, or folder from your source control system.

 Check Files In and Out from MSSCCI Source Control

30-55

Undoing the Checkout

You can undo the checkout for files. The files remain checked in, and do not have any of
the changes you made since you last checked them out. To save any changes you have
made since checking out a particular file click Save on the Editor or Live Editor tab,
select Save As, and supply a different file name before you undo the checkout.

To undo a checkout, follow these steps:

1 In the MATLAB Current Folder browser, select the files for which you want to undo
the checkout.

2 Right-click, and from the context menu, select Source Control > Undo Checkout.

The MATLAB Undo checkout dialog box opens, listing the files you selected.

3 Click OK.

30 Source Control Interface

30-56

Additional MSSCCI Source Control Actions

Note: MSSCCI support will be removed in a future release. Replace this functionality
with one of the following options.

• Use a source control system that is part of the MathWorks “Source Control
Integration” with the Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source
control.

• Use the MATLAB system function and the command-line API for your source control
tool to replicate existing functionality.

In this section...

“Getting the Latest Version of Files for Viewing or Compiling” on page 30-56
“Removing Files from the Source Control System” on page 30-57
“Showing File History” on page 30-58
“Comparing the Working Copy of a File to the Latest Version in Source Control” on page
30-59
“Viewing Source Control Properties of a File” on page 30-61
“Starting the Source Control System” on page 30-61

Getting the Latest Version of Files for Viewing or Compiling

You can get the latest version of a file from the source control system for viewing or
running. Getting a file differs from checking it out. When you get a file, it is write
protected so you cannot edit it, but when you check out a file, you can edit it.

To get the latest version, follow these steps:

1 In the MATLAB Current Folder browser, select the folders or files that you want to
get. If you select files, you cannot select folders too.

2 Right-click, and from the context menu, select Source Control > Get Latest
Version.

 Additional MSSCCI Source Control Actions

30-57

The MATLAB Get latest version dialog box opens, listing the files or folders you
selected.

3 Click OK.

You can now open the file to view it, run the file, or check out the file for editing.

Removing Files from the Source Control System

To remove files from the source control system, follow these steps:

1 In the MATLAB Current Folder browser, select the files you want to remove.
2 Right-click, and from the context menu, select Source Control > Remove from

Source Control.

The MATLAB Remove from source control dialog box opens, listing the files you
selected.

3 Click OK.

30 Source Control Interface

30-58

Showing File History

To show the history of a file in the source control system, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to view
the history.

2 Right-click, and from the context menu, select Source Control > History.

A dialog box, which is specific to your source control system, opens. For Microsoft
Visual SourceSafe, the History Options dialog box opens, as shown in the following
example illustration.

3 Complete the dialog box to specify the range of history you want for the selected file
and click OK. For example, enter my_name for User.

The history presented depends on your source control system. For Microsoft Visual
SourceSafe, the History dialog box opens for that file, showing the file's history in
the source control system.

 Additional MSSCCI Source Control Actions

30-59

Comparing the Working Copy of a File to the Latest Version in Source
Control

You can compare the current working copy of a file with the latest checked-in version of
the file in the source control system. This highlights the differences between the two files,
showing the changes you made since you checked out the file.

To view the differences, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to view
differences. This is a file that has been checked out and edited.

2 Right-click, and from the context menu, select Source Control > Differences.

A dialog box, which is specific to your source control system, opens. For Microsoft
Visual SourceSafe, the Difference Options dialog box opens.

3 Review the default entries in the dialog box, make any needed changes, and click
OK. The following example is for Microsoft Visual SourceSafe.

30 Source Control Interface

30-60

The method of presenting differences depends on your source control system. For
Microsoft Visual SourceSafe, the Differences for dialog box opens. This highlights
the differences between the working copy of the file and the latest checked-in version
of the file.

 Additional MSSCCI Source Control Actions

30-61

Viewing Source Control Properties of a File

To view the source control properties of a file, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to view
properties.

2 Right-click, and from the context menu, select Source Control > Properties.

A dialog box, which is specific to your source control system, opens. The following
example shows the Microsoft Visual SourceSafe properties dialog box.

Starting the Source Control System

All the MATLAB source control actions automatically start the source control system to
perform the action, if the source control system is not already open. If you want to start
the source control system from MATLAB without performing a specific action source
control action,

30 Source Control Interface

30-62

1 Right-click any folder or file in the MATLAB Current Folder browser
2 From the context menu, select Source Control > Start Source Control System.

The interface to your source control system opens, showing the source control project
associated with the current folder in MATLAB. The following example shows the
Microsoft Visual SourceSafe Explorer interface.

 Access MSSCCI Source Control from Editors

30-63

Access MSSCCI Source Control from Editors

Note: MSSCCI support will be removed in a future release. Replace this functionality
with one of the following options.

• Use a source control system that is part of the MathWorks “Source Control
Integration” with the Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source
control.

• Use the MATLAB system function and the command-line API for your source control
tool to replicate existing functionality.

You can create or open a file in the Editor, the Simulink or Stateflow products and
perform most source control actions from their File > Source Control menus, rather
than from the Current Folder browser. Following are some differences in the source
control interface process when you use the Editor, Simulink, or Stateflow:

• You can perform actions on only one file at time.
• Some of the dialog boxes have a different icon in the title bar. For example, the

Check out file(s) dialog box uses the MATLAB Editor icon instead of the MATLAB
icon.

• You cannot add a new (Untitled) file, but must instead first save the file.
• You cannot register projects from the Simulink or Stateflow products. Instead,

register a project using the Current Folder browser, as described in “Register Source
Control Project with MATLAB Software” on page 30-49.

30 Source Control Interface

30-64

Troubleshoot MSSCCI Source Control Problems

Note: MSSCCI support will be removed in a future release. Replace this functionality
with one of the following options.

• Use a source control system that is part of the MathWorks “Source Control
Integration” with the Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source
control.

• Use the MATLAB system function and the command-line API for your source control
tool to replicate existing functionality.

In this section...

“Source Control Error: Provider Not Present or Not Installed Properly” on page
30-64
“Restriction Against @ Character” on page 30-65
“Add to Source Control Is the Only Action Available” on page 30-65
“More Solutions for Source Control Problems” on page 30-66

Source Control Error: Provider Not Present or Not Installed Properly

In some cases, MATLAB software recognizes your source control system but you cannot
use source control features for MATLAB. Specifically, when you select MATLAB >
General > Source Control in the Preferences dialog box, MATLAB lists your source
control system, but you cannot perform any source control actions. Only the Start
Source Control System item is available, and when you select it, MATLAB displays
this error:
Source control provider is not present or not installed properly.

Often, this error occurs because a registry key that MATLAB requires from the source
control application is not present. Make sure this registry key is present:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\

InstalledSCCProviders

 Troubleshoot MSSCCI Source Control Problems

30-65

The registry key refers to another registry key that is similar to

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SourceSafe\SccServerPath

This registry key has a path to a DLL-file in the file system. Make sure the DLL-file
exists in that location. If you are not familiar with registry keys, ask your system
administrator for help.

If this does not solve the problem and you use Microsoft Visual SourceSafe, try running
a client setup for your source control application. When SourceSafe is installed on a
server for a group to use, each machine client can run a setup but is not required to do so.
However, some applications that interface with SourceSafe, including MATLAB, require
you to run the client setup. Run the client setup, which should resolve the problem.

If the problem persists, access source control outside of MATLAB.

Restriction Against @ Character

Some source control systems, such as Perforce® and Synergy™, reserve the @ character.
Perforce, for example, uses it as a revision specifier. Therefore, you might experience
problems if you use these source control systems with MATLAB files and folders that
include the @ character in the folder or file name.

You might be able to work around this restriction by quoting nonstandard characters in
file names, such as with an escape sequence, which some source control systems allow.
Consult your source control system documentation or technical support resources for a
workaround.

Add to Source Control Is the Only Action Available

To use source control features for a file in the Simulink or Stateflow products, the file's
source control project must first be registered with MATLAB. When a file's source control
project is not registered with MATLAB, all MATLAB > General > Source Control
menu items on the Preferences dialog box are disabled except Add to Source Control.
You can select Add to Source Control, which registers the project with MATLAB, or
you can register the project using the Current Folder browser, as described in “Register
Source Control Project with MATLAB Software” on page 30-49. You can then perform
source control actions for all files in that project (folder).

30 Source Control Interface

30-66

More Solutions for Source Control Problems

The latest solutions for problems interfacing MATLAB with a source control system
appear on the MathWorks Web page for support at http://www.mathworks.com/
support/. Search Solutions and Technical Notes for “source control.”

http://www.mathworks.com/support/
http://www.mathworks.com/support/

31

Unit Testing

• “Write Script-Based Unit Tests” on page 31-3
• “Additional Topics for Script-Based Tests” on page 31-10
• “Write Function-Based Unit Tests” on page 31-14
• “Write Simple Test Case Using Functions” on page 31-18
• “Write Test Using Setup and Teardown Functions” on page 31-23
• “Additional Topics for Function-Based Tests” on page 31-30
• “Author Class-Based Unit Tests in MATLAB” on page 31-35
• “Write Simple Test Case Using Classes” on page 31-39
• “Write Setup and Teardown Code Using Classes” on page 31-44
• “Types of Qualifications” on page 31-48
• “Tag Unit Tests” on page 31-51
• “Write Tests Using Shared Fixtures” on page 31-56
• “Create Basic Custom Fixture” on page 31-60
• “Create Advanced Custom Fixture” on page 31-63
• “Create Basic Parameterized Test” on page 31-70
• “Create Advanced Parameterized Test” on page 31-76
• “Create Simple Test Suites” on page 31-84
• “Run Tests for Various Workflows” on page 31-87
• “Programmatically Access Test Diagnostics” on page 31-91
• “Add Plugin to Test Runner” on page 31-92
• “Write Plugins to Extend TestRunner” on page 31-95
• “Create Custom Plugin” on page 31-99
• “Write Plugin to Save Diagnostic Details” on page 31-105
• “Plugin to Generate Custom Test Output Format” on page 31-110
• “Analyze Test Case Results” on page 31-114

31 Unit Testing

31-2

• “Analyze Failed Test Results” on page 31-117
• “Dynamically Filtered Tests” on page 31-120
• “Create Custom Constraint” on page 31-128
• “Create Custom Boolean Constraint” on page 31-131
• “Create Custom Tolerance” on page 31-134
• “Overview of Performance Testing Framework” on page 31-140
• “Test Performance Using Scripts or Functions” on page 31-144
• “Test Performance Using Classes” on page 31-149

 Write Script-Based Unit Tests

31-3

Write Script-Based Unit Tests

This example shows how to write a script that tests a function that you create. The
example function computes the angles of a right triangle, and you create a script-based
unit test to test the function.

Create rightTri Function to Test

Create this function in a file, rightTri.m, in your current MATLAB® folder. This
function takes lengths of two sides of a triangle as input and returns the three angles
of the corresponding right triangle. The input sides are the two shorter edges of the
triangle, not the hypotenuse.

% Copyright 2015 The MathWorks, Inc.

function angles = rightTri(sides)

A = atand(sides(1)/sides(2));

B = atand(sides(2)/sides(1));

hypotenuse = sides(1)/sind(A);

C = asind(hypotenuse*sind(A)/sides(1));

angles = [A B C];

end

Create Test Script

In your working folder, create a new script, rightTriTest.m. Each unit test checks a
different output of the rightTri function. A test script must adhere to the following
conventions:

• The name of the script file must start or end with the word 'test', which is case-
insensitive.

• Place each unit test into a separate section of the script file. Each section begins with
two percent signs (%%), and the text that follows on the same line becomes the name
of the test element. If no text follows the %%, MATLAB assigns a name to the test. If
MATLAB encounters a test failure, it still runs remaining tests.

31 Unit Testing

31-4

• In a test script, the shared variable section consists of any code that appears before
the first explicit code section (the first line beginning with %%). Tests share the
variables that you define in this section. Within a test, you can modify the values of
these variables. However, in subsequent tests, the value is reset to the value defined
in the shared variables section.

• In the shared variables section (first code section), define any preconditions necessary
for your tests. If the inputs or outputs do not meet this precondition, MATLAB does
not run any of the tests. MATLAB marks the tests as failed and incomplete.

• When a script is run as a test, variables defined in one test are not accessible within
other tests unless they are defined in the shared variables section (first code section).
Similarly, variables defined in other workspaces are not accessible to the tests.

• If the script file does not include any code sections, MATLAB generates a single test
element from the full contents of the script file. The name of the test element is the
same as the script file name. In this case, if MATLAB encounters a failed test, it halts
execution of the entire script.

In rightTriTest.m, write four tests to test the output of rightTri. Use the assert
function to test the different conditions. In the shared variables section, define four
triangle geometries and define a precondition that the rightTri function returns a right
triangle.

% test triangles

% Copyright 2015 The MathWorks, Inc.

tri = [7 9];

triIso = [4 4];

tri306090 = [2 2*sqrt(3)];

triSkewed = [1 1500];

% preconditions

angles = rightTri(tri);

assert(angles(3) == 90,'Fundamental problem: rightTri not producing right triangle')

%% Test 1: sum of angles

angles = rightTri(tri);

assert(sum(angles) == 180)

angles = rightTri(triIso);

assert(sum(angles) == 180)

 Write Script-Based Unit Tests

31-5

angles = rightTri(tri306090);

assert(sum(angles) == 180)

angles = rightTri(triSkewed);

assert(sum(angles) == 180)

%% Test 2: isosceles triangles

angles = rightTri(triIso);

assert(angles(1) == 45)

assert(angles(1) == angles(2))

%% Test 3: 30-60-90 triangle

angles = rightTri(tri306090);

assert(angles(1) == 30)

assert(angles(2) == 60)

assert(angles(3) == 90)

%% Test 4: Small angle approximation

angles = rightTri(triSkewed);

smallAngle = (pi/180)*angles(1); % radians

approx = sin(smallAngle);

assert(approx == smallAngle, 'Problem with small angle approximation')

Test 1 tests the summation of the triangle angles. If the summation is not equal to 180
degrees, assert throws an error.

Test 2 tests that if two sides are equal, the corresponding angles are equal. If the non-
right angles are not both equal to 45 degrees, the assert function throws an error.

Test 3 tests that if the triangle sides are 1 and sqrt(3), the angles are 30, 60, and 90
degrees. If this condition is not true, assert throws an error.

Test 4 tests the small-angle approximation. The small-angle approximation states that
for small angles the sine of the angle in radians is approximately equal to the angle. If it
is not true, assert throws an error.

Run Tests

Execute the runtests function to run the four tests in rightTriTest.m. The
runtests function executes each test in each code section individually. If Test 1
fails, MATLAB still runs the remaining tests. If you execute rightTriTest as a
script instead of by using runtests, MATLAB halts execution of the entire script if

31 Unit Testing

31-6

it encounters a failed assertion. Additionally, when you run tests using the runtests
function, MATLAB provides informative test diagnostics.

result = runtests('rightTriTest');

Running rightTriTest

..

==

Error occurred in rightTriTest/Test3_30_60_90Triangle and it did not run to completion.

 Error ID:

 'MATLAB:assertion:failed'

 Error Details:

 Assertion failed.

==

.

==

Error occurred in rightTriTest/Test4_SmallAngleApproximation and it did not run to completion.

 Error ID:

 ''

 Error Details:

 Problem with small angle approximation

==

.

Done rightTriTest

Failure Summary:

 Name Failed Incomplete Reason(s)

 ===

 rightTriTest/Test3_30_60_90Triangle X X Errored.

 Write Script-Based Unit Tests

31-7

 rightTriTest/Test4_SmallAngleApproximation X X Errored.

The test for the 30-60-90 triangle and the test for the small-angle approximation fail
in the comparison of floating-point numbers. Typically, when you compare floating-point
values, you specify a tolerance for the comparison. In Test 3 and Test 4, MATLAB throws
an error at the failed assertion and does not complete the test. Therefore, the test is
marked as both Failed and Incomplete.

To provide diagnostic information (Error Details) that is more informative than
'Assertion failed' (Test 3), consider passing a message string to the assert
function (as in Test 4). Or you can also consider using function-based unit tests.

Revise Test to Use Tolerance

Save rightTriTest.m as rightTriTolTest.m, and revise Test 3 and Test 4 to use
a tolerance. In Test 3 and Test 4, instead of asserting that the angles are equal to an
expected value, assert that the difference between the actual and expected values is less
than or equal to a specified tolerance. Define the tolerance in the shared variables section
of the test script so it is accessible to both tests.

For script-based unit tests, manually verify that the difference between two values is less
than a specified tolerance. If instead you write a function-based unit test, you can access
built-in constraints to specify a tolerance when comparing floating-point values.

% test triangles

% Copyright 2015 The MathWorks, Inc.

tri = [7 9];

triIso = [4 4];

tri306090 = [2 2*sqrt(3)];

triSkewed = [1 1500];

% Define an absolute tolerance

tol = 1e-10;

% preconditions

angles = rightTri(tri);

assert(angles(3) == 90,'Fundamental problem: rightTri not producing right triangle')

%% Test 1: sum of angles

31 Unit Testing

31-8

angles = rightTri(tri);

assert(sum(angles) == 180)

angles = rightTri(triIso);

assert(sum(angles) == 180)

angles = rightTri(tri306090);

assert(sum(angles) == 180)

angles = rightTri(triSkewed);

assert(sum(angles) == 180)

%% Test 2: isosceles triangles

angles = rightTri(triIso);

assert(angles(1) == 45)

assert(angles(1) == angles(2))

%% Test 3: 30-60-90 triangle

angles = rightTri(tri306090);

assert(abs(angles(1)-30) <= tol)

assert(abs(angles(2)-60) <= tol)

assert(abs(angles(3)-90) <= tol)

%% Test 4: Small angle approximation

angles = rightTri(triSkewed);

smallAngle = (pi/180)*angles(1); % radians

approx = sin(smallAngle);

assert(abs(approx-smallAngle) <= tol, 'Problem with small angle approximation')

Rerun the tests.

result = runtests('rightTriTolTest');

Running rightTriTolTest

....

Done rightTriTolTest

All the tests pass.

Create a table of test results.

rt = table(result)

 Write Script-Based Unit Tests

31-9

rt =

 Name Passed Failed Incomplete Duration Details

 ___ ______ ______ __________ ________ ____________

 'rightTriTolTest/Test1_SumOfAngles' true false false 0.054796 [1x1 struct]

 'rightTriTolTest/Test2_IsoscelesTriangles' true false false 0.016219 [1x1 struct]

 'rightTriTolTest/Test3_30_60_90Triangle' true false false 0.01416 [1x1 struct]

 'rightTriTolTest/Test4_SmallAngleApproximation' true false false 0.016644 [1x1 struct]

See Also
assert | runtests

Related Examples
• “Write Function-Based Unit Tests” on page 31-14

31 Unit Testing

31-10

Additional Topics for Script-Based Tests

In this section...

“Test Suite Creation” on page 31-10
“Test Selection” on page 31-11
“Programmatic Access of Test Diagnostics” on page 31-12
“Test Runner Customization” on page 31-12

Typically, with script-based tests, you create a test file, and pass the file name to the
runtests function without explicitly creating a suite of Test objects. If you create an
explicit test suite, there are additional features available in script-based testing. These
features include selecting tests and using plugins to customize the test runner. For
additional functionality, consider using “Function-Based Unit Tests” or “Class-Based
Unit Tests”.

Test Suite Creation

To create a test suite from a script-based test directly, use the testsuite function. For
a more explicit test suite creation, use the fromFile method of TestSuite. Then you can
use the run method instead of the runtests function to run the tests. For example, if
you have a script-based test in a file rightTriTolTest.m, these three approaches are
equivalent.

% Implicit tests suite

result = runtests('rightTriTolTest.m');

% Expicit test suite

suite = testsuite('rightTriTolTest.m');

result = run(suite);

% Explict test suite

suite = matlab.unittest.TestSuite.fromFile('rightTriTolTest.m');

result = run(suite);

Also, you can create a test suite from all the test files in a specified folder using the
TestSuite.fromFolder method. If you know the name of a particular test in your script-
based test file, you can create a test suite from that test using TestSuite.fromName.

 Additional Topics for Script-Based Tests

31-11

Test Selection

With an explicit test suite, use selectors to refine your suite. Several of the selectors are
applicable only for class-based tests, but you can select tests for your suite based on the
test name:

• Use the 'Name' name-value pair argument in a suite generation method, such as
fromFile.

• Use a selectors instance and optional constraints instance.

Use these approaches in a suite generation method, such as fromFile, or create a suite
and filter it using the TestSuite.selectIf method. For example, in this listing, the four
values of suite are equivalent.

import matlab.unittest.selectors.HasName

import matlab.unittest.constraints.ContainsSubstring

import matlab.unittest.TestSuite.fromFile

f = 'rightTriTolTest.m';

selector = HasName(ContainsSubstring('Triangle'));

% fromFile, name-value pair

suite = TestSuite.fromFile(f,'Name','*Triangle*')

% fromFile, selector

suite = TestSuite.fromFile(f,selector)

% selectIf, name-value pair

fullSuite = TestSuite.fromFile(f);

suite = selectIf(fullSuite,'Name','*Triangle*')

% selectIf, selector

fullSuite = TestSuite.fromFile(f);

suite = selectIf(fullSuite,selector)

If you use one of the suite creation methods with a selector or name-value pair, the
testing framework creates the filtered suite. If you use the TestSuite.selectIf method, the
testing framework creates a full test suite and then filters it. For large test suites, this
approach can have performance implications.

31 Unit Testing

31-12

Programmatic Access of Test Diagnostics

If you run tests with the runtests function or the run method of TestSuite or
TestCase, the test framework uses a DiagnosticsRecordingPlugin plugin that
records diagnostics on test results.

After you run tests, you can access recorded diagnostics via the DiagnosticRecord field
in the Details property on TestResult. For example, if your test results are stored in
the variable results, find the recorded diagnostics for the second test in the suite by
invoking records = result(2).Details.DiagnosticRecord.

The recorded diagnostics are DiagnosticRecord objects. To access particular types
of test diagnostics for a particular test, use the selectFailed, selectPassed,
selectIncomplete, and selectLogged methods of the DiagnosticRecord class.

By default, the DiagnosticsRecordingPlugin plugin records qualification failures
and logged events at the matlab.unittest.Verbosity.Terse level of verbosity. For
more information, see DiagnosticRecordingPlugin and DiagnosticRecord.

Test Runner Customization

Use a TestRunner object to customize the way the framework runs a test suite. With a
TestRunner object you can:

• Produce no output in the command window using the withNoPlugins method.
• Run tests in parallel using the runInParallel method.
• Add plugins to the test runner using the addPlugin method.

For example,use test suite, suite, to create a silent test runner and run the tests with
the run method of TestRunner.

runner = matlab.unittest.TestRunner.withNoPlugins;

results = runner.run(suite);

Use plugins to customize the test runner further. For example, you can redirect output,
determine code coverage, or change how the test runner responds to warnings. For more
information, see “Add Plugin to Test Runner” on page 31-92 and the plugins classes.

See Also
constraints | plugins | selectors | TestRunner | TestSuite

 Additional Topics for Script-Based Tests

31-13

Related Examples
• “Add Plugin to Test Runner” on page 31-92

31 Unit Testing

31-14

Write Function-Based Unit Tests

In this section...

“Create Test Function” on page 31-14
“Run the Tests” on page 31-17
“Analyze the Results” on page 31-17

Create Test Function

Your test function is a single MATLAB file that contains a main function and your
individual local test functions. Optionally, you can include file fixture and fresh fixture
functions. File fixtures consist of setup and teardown functions shared across all the tests
in a file. These functions are executed once per test file. Fresh fixtures consist of setup
and teardown functions that are executed before and after each local test function.

Create the Main Function

The main function collects all of the local test functions into a test array. Since it is the
main function, the function name corresponds to the name of your .m file and follows the
naming convention of starting or ending in the word ‘test’, which is case-insensitive. In
this sample case, the MATLAB file is exampleTest.m. The main function needs to make
a call to functiontests to generate a test array, tests. Use localfunctions as the
input to functiontests to automatically generate a cell array of function handles to all
the local functions in your file. This is a typical main function.

function tests = exampleTest

tests = functiontests(localfunctions);

end

Create Local Test Functions

Individual test functions are included as local functions in the same MATLAB file as the
main (test-generating) function. These test function names must begin or end with the
case-insensitive word, ‘test’. Each of the local test functions must accept a single input,
which is a function test case object, testCase. The Unit Test Framework automatically
generates this object. For more information on creating test functions, see “Write Simple
Test Case Using Functions” on page 31-18 and “Types of Qualifications” on page
31-48. This is a typical example of skeletal local-test functions.

function testFunctionOne(testCase)

 Write Function-Based Unit Tests

31-15

% Test specific code

end

function FunctionTwotest(testCase)

% Test specific code

end

Create Optional Fixture Functions

Setup and teardown code, also referred to as test fixture functions, set up the pretest
state of the system and return it to the original state after running the test. There are
two types of these functions: file fixture functions that run once per test file, and fresh
fixture functions that run before and after each local test function. These functions are
not required to generate tests. In general, it is preferable to use fresh fixtures over file
fixtures to increase unit test encapsulation.

A function test case object, testCase, must be the only input to file fixture and fresh
fixture functions. The Unit Test Framework automatically generates this object. The
TestCase object is a means to pass information between setup functions, test functions,
and teardown functions. Its TestData property is, by default, a struct, which allows
easy addition of fields and data. Typical uses for this test data include paths and
graphics handles. For an example using the TestData property, see “Write Test Using
Setup and Teardown Functions” on page 31-23.
File Fixture Functions

Use file fixture functions to share setup and teardown functions across all the tests in a
file. The names for the file fixture functions must be setupOnce and teardownOnce,
respectively. These functions execute a single time for each file. You can use file fixtures
to set a path before testing, and then reset it to the original path after testing. This is a
typical example of skeletal file fixture setup and teardown code.

function setupOnce(testCase) % do not change function name

% set a new path, for example

end

function teardownOnce(testCase) % do not change function name

% change back to original path, for example

end

Fresh Fixture Functions

Use fresh fixture functions to set up and tear down states for each local test function. The
names for these fresh fixture functions must be setup and teardown, respectively. You

31 Unit Testing

31-16

can use fresh fixtures to obtain a new figure before testing and to close the figure after
testing. This is typical example of skeletal test function level setup and teardown code.

function setup(testCase) % do not change function name

% open a figure, for example

end

function teardown(testCase) % do not change function name

% close figure, for example

end

Program Listing Template

%% Main function to generate tests

function tests = exampleTest

tests = functiontests(localfunctions);

end

%% Test Functions

function testFunctionOne(testCase)

% Test specific code

end

function FunctionTwotest(testCase)

% Test specific code

end

%% Optional file fixtures

function setupOnce(testCase) % do not change function name

% set a new path, for example

end

function teardownOnce(testCase) % do not change function name

% change back to original path, for example

end

%% Optional fresh fixtures

function setup(testCase) % do not change function name

% open a figure, for example

end

function teardown(testCase) % do not change function name

% close figure, for example

end

 Write Function-Based Unit Tests

31-17

Run the Tests

The figure below details the tasks executed when you run the tests.

To run tests from the command prompt, use the runtests command with your MATLAB
test file as input. For example:

results = runtests('exampleTest.m')

Alternatively, you can run tests using the run function.

results = run(exampleTest)

For more information on running tests see the runtests reference page and “Run Tests
for Various Workflows” on page 31-87.

Analyze the Results

To analyze the test results, examine the output structure from runtests or run. For
each test, the result contains the name of the test function, whether it passed, failed,
or didn’t complete, and the time it took to run the test. For more information, see
“Analyze Test Case Results” on page 31-114 and “Analyze Failed Test Results” on page
31-117.

See Also
functiontests | localfunctions | runtests

Related Examples
• “Write Simple Test Case Using Functions” on page 31-18
• “Write Test Using Setup and Teardown Functions” on page 31-23

31 Unit Testing

31-18

Write Simple Test Case Using Functions

This example shows how to write a unit test for a MATLAB function,
quadraticSolver.m.

Create quadraticSolver.m Function

This MATLAB function solves quadratic equations. Create this function in a folder on
your MATLAB path.

function roots = quadraticSolver(a, b, c)

% quadraticSolver returns solutions to the

% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')

 error('quadraticSolver:InputMustBeNumeric', ...

 'Coefficients must be numeric.');

end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);

roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create solverTest Function

Create this function in a folder on your MATLAB path.

function tests = solverTest

tests = functiontests(localfunctions);

end

A call to functiontests using localfunctions as input creates an array of tests from
each local function in the solverTest.m file. Each test is a local function that follows
the naming convention of having ’test’ at the beginning or end of the function name.
Local functions that do not follow this convention are not included in the test array. Test
functions must accept a single input argument into which the test framework passes
a function test case object. The function uses this object for verifications, assertions,
assumptions, and fatal assertions. It contains a TestData structure that allows data to
be passed between setup, test, and teardown functions.

 Write Simple Test Case Using Functions

31-19

Create Test Function for Real Solutions

Create a test function, testRealSolution, to verify that quadraticSolver returns
the correct value for real solutions. For example, the equation x2 - 3x + 2 = 0 has
real solutions x = 1 and x = 2. This function calls quadraticSolver with the inputs
of this equation. The expected solution, expSolution, is [2,1].

Use the qualification function, verifyEqual, to compare the output of the function,
actSolution, to the desired output, expSolution. If the qualification fails, the
framework continues executing the test. Typically, when using verifyEqual on floating
point values, you specify a tolerance for the comparison. For more information, see
matlab.unittest.constraints.

Add this function to the solverTest.m file.

function testRealSolution(testCase)

actSolution = quadraticSolver(1,-3,2);

expSolution = [2 1];

verifyEqual(testCase,actSolution,expSolution)

end

Create Test Function for Imaginary Solutions

Create a test to verify that quadraticSolver returns the right value for imaginary
solutions. For example, the equation x2 - 2x + 10 = 0 has imaginary solutions
x = -1 + 3i and x = -1 - 3i. Typically, when using verifyEqual on floating
point values, you specify a tolerance for the comparison. For more information, see
matlab.unittest.constraints.

Add this function, testImaginarySolution, to the solverTest.m file.

function testImaginarySolution(testCase)

actSolution = quadraticSolver(1,2,10);

expSolution = [-1+3i -1-3i];

verifyEqual(testCase,actSolution,expSolution)

end

The order of the tests within the solverTest.m file does not matter because they are
fully independent test cases.

Save solverTest Function

The following is the complete solverTest.m test file. Save this file in a folder on your
MATLAB path.

31 Unit Testing

31-20

function tests = solverTest

tests = functiontests(localfunctions);

end

function testRealSolution(testCase)

actSolution = quadraticSolver(1,-3,2);

expSolution = [2 1];

verifyEqual(testCase,actSolution,expSolution)

end

function testImaginarySolution(testCase)

actSolution = quadraticSolver(1,2,10);

expSolution = [-1+3i -1-3i];

verifyEqual(testCase,actSolution,expSolution)

end

Run Tests in solverTest Function

Run the tests.

results = runtests('solverTest.m')

Running solverTest

..

Done solverTest

results =

 1x2 TestResult array with properties:

 Name

 Passed

 Failed

 Incomplete

 Duration

Totals:

 2 Passed, 0 Failed, 0 Incomplete.

 0.19172 seconds testing time.

Both of the tests passed.

 Write Simple Test Case Using Functions

31-21

Introduce an Error in quadraticSolver.m and Run Tests

Cause one of the tests to fail by forcing roots in quadraticSolver.m to be real.
Before ending the function, add the line: roots = real(roots);. (Do not change
solverTest.m.) Save the file and run the tests.

results = runtests('solverTest.m')

Running solverTest

.

==

Verification failed in solverTest/testImaginarySolution.

 Framework Diagnostic:

 verifyEqual failed.

 --> Complexity does not match.

 Actual Complexity:

 Real

 Expected Complexity:

 Complex

 Actual Value:

 -1 -1

 Expected Value:

 -1.000000000000000 + 3.000000000000000i -1.000000000000000 - 3.000000000000000i

 Stack Information:

 In C:\work\solverTest.m (testImaginarySolution) at 14

==

.

Done solverTest

Failure Summary:

 Name Failed Incomplete Reason(s)

 ===

 solverTest/testImaginarySolution X Failed by verification.

31 Unit Testing

31-22

results =

 1x2 TestResult array with properties:

 Name

 Passed

 Failed

 Incomplete

 Duration

Totals:

 1 Passed, 1 Failed, 0 Incomplete.

 0.043751 seconds testing time.

The imaginary test verification failed.

Restore quadraticSolver.m to its previous, correct version by removing the roots =
real(roots); code.

See Also
matlab.unittest.constraints

More About
• “Write Function-Based Unit Tests” on page 31-14
• “Types of Qualifications” on page 31-48

 Write Test Using Setup and Teardown Functions

31-23

Write Test Using Setup and Teardown Functions

This example shows how to write a unit test for a couple of MATLAB® figure axes
properties using fresh fixtures and file fixtures.

Create axesPropertiesTest File

Create a file containing the main function that tests figure axes properties and include
two test functions. One function verifies that the x-axis limits are correct, and the other
one verifies that the face color of a surface is correct.

In a folder on your MATLAB path, create axesPropertiesTest.m. In the main
function of this file, have functiontests create an array of tests from each local
function in axesPropertiesTest.m with a call to the localfunctions function.

% Copyright 2015 The MathWorks, Inc.

function tests = axesPropertiesTest

tests = functiontests(localfunctions);

end

Create File Fixture Functions

File fixture functions are setup and teardown code that runs a single time in your
test file. These fixtures are shared across the test file. In this example, the file fixture
functions create a temporary folder and set it as the current working folder. They
also create and save a new figure for testing. After tests are complete, the framework
reinstates the original working folder and deletes the temporary folder and saved figure.

In this example, a helper function creates a simple figure — a red cylinder. In a more
realistic scenario, this code is part of the product under test and is computationally
expensive, thus motivating the intent to create the figure only once and to load
independent copies of the result for each test function. For this example, however, you
want to create this helper function as a local function to axesPropertiesTest. Note
that the test array does not include the function because its name does not start or end
with ‘test’.

Write a helper function that creates a simple red cylinder and add it as a local function to
axesPropertiesTest.

31 Unit Testing

31-24

% Copyright 2015 The MathWorks, Inc.

function f = createFigure

f = figure;

ax = axes('Parent', f);

cylinder(ax,10)

h = findobj(ax,'Type','surface');

h.FaceColor = [1 0 0];

end

You must name the setup and teardown functions of a file test fixture setupOnce and
teardownOnce, respectively. These functions take a single input argument, testCase,
into which the test framework automatically passes a function test case object. This test
case object contains a TestData structure that allows data to pass between setup, test,
and teardown functions. In this example, the TestData structure uses assigned fields to
store the original path, the temporary folder name, and the figure file name.

Create the setup and teardown functions as a local functions to axesPropertiesTest.

% Copyright 2015 The MathWorks, Inc.

function setupOnce(testCase)

% create and change to temporary folder

testCase.TestData.origPath = pwd;

testCase.TestData.tmpFolder = ['tmpFolder' datestr(now,30)];

mkdir(testCase.TestData.tmpFolder)

cd(testCase.TestData.tmpFolder)

% create and save a figure

testCase.TestData.figName = 'tmpFig.fig';

aFig = createFigure;

saveas(aFig,testCase.TestData.figName,'fig')

close(aFig)

end

function teardownOnce(testCase)

delete(testCase.TestData.figName)

cd(testCase.TestData.origPath)

rmdir(testCase.TestData.tmpFolder)

 Write Test Using Setup and Teardown Functions

31-25

end

Create Fresh Fixture Functions

Fresh fixtures are function level setup and teardown code that runs before and after each
test function in your file. In this example, the functions open the saved figure and find
the handles. After testing, the framework closes the figure.

You must name fresh fixture functions setup and teardown, respectively. Similar to
the file fixture functions, these functions take a single input argument, testCase. In
this example, these functions create a new field in the TestData structure that includes
handles to the figure and to the axes. This allows information to pass between setup,
test, and teardown functions.

Create the setup and teardown functions as a local functions to axesPropertiesTest.
Open the saved figure for each test to ensure test independence.

% Copyright 2015 The MathWorks, Inc.

function setup(testCase)

testCase.TestData.Figure = openfig(testCase.TestData.figName);

testCase.TestData.Axes = findobj(testCase.TestData.Figure,...

 'Type','Axes');

end

function teardown(testCase)

close(testCase.TestData.Figure)

end

In addition to custom setup and teardown code, the Unit Testing Framework
provides some classes for creating fixtures. For more information see
matlab.unittest.fixtures.

Create Test Functions

Each test is a local function that follows the naming convention of having ‘test’ at the
beginning or end of the function name. The test array does not include local functions
that do not follow this convention. Similar to setup and teardown functions, individual
test functions must accept a single input argument, testCase. Use this test case object
for verifications, assertions, assumptions, and fatal assertions functions.

31 Unit Testing

31-26

The testDefaultXLim function test verifies that the x-axis limits are large enough to
display the cylinder. The lower limit needs to be less than -10, and the upper limit needs
to be greater than 10. These values come from the figure generated in the helper function
— a cylinder with a 10 unit radius centered on the origin. This test function opens
the figure created and saved in the setupOnce function, queries the axes limit, and
verifies the limits are correct. The qualification functions, verifyLessThanOrEqual
and verifyGreaterThanOrEqual, takes the test case, the actual value, the expected
value, and optional diagnostic information to display in the case of failure as inputs.

Create the testDefaultXLim function as local function to axesPropertiesTest.

% Copyright 2015 The MathWorks, Inc.

function testDefaultXLim(testCase)

xlim = testCase.TestData.Axes.XLim;

verifyLessThanOrEqual(testCase, xlim(1), -10,...

 'Minimum x-limit was not small enough')

verifyGreaterThanOrEqual(testCase, xlim(2), 10,...

 'Maximum x-limit was not big enough')

end

The surfaceColorTest function accesses the figure that you created and saved in the
setupOnce function. surfaceColorTest queries the face color of the cylinder and
verifies that it is red. The color red has an RGB value of [1 0 0]. The qualification
function, verifyEqual, takes as inputs the test case, the actual value, the expected
value, and optional diagnostic information to display in the case of failure. Typically
when using verifyEqual on floating point-values, you specify a tolerance for the
comparison. For more information, see matlab.unittest.constraints.

Create the surfaceColorTest function as local function to axesPropertiesTest.

% Copyright 2015 The MathWorks, Inc.

function surfaceColorTest(testCase)

h = findobj(testCase.TestData.Axes,'Type','surface');

co = h.FaceColor;

verifyEqual(testCase, co, [1 0 0],'FaceColor is incorrect')

end

 Write Test Using Setup and Teardown Functions

31-27

Now the axesPropertiesTest.m file is complete with a main function, file fixture
functions, fresh fixture functions, and two local test functions. You are ready to run the
tests.

Run Tests

The next step is to run the tests using the runtests function. In this example, the call to
runtests results in the following steps:

1 The main function creates a test array.
2 The file fixture records the working folder, creates a temporary folder, sets the

temporary folder as the working folder, then generates and saves a figure.
3 The fresh fixture setup opens the saved figure and finds the handles.
4 The testDefaultXLim test is run.
5 The fresh fixture teardown closes the figure.
6 The fresh fixture setup opens the saved figure and finds the handles.
7 The surfaceColorTest test is run.
8 The fresh fixture teardown closes the figure.
9 The file fixture teardown deletes the saved figure, changes back to the original path

and deletes the temporary folder.

At the command prompt, generate and run the test suite.

results = runtests('axesPropertiesTest.m')

Running axesPropertiesTest

..

Done axesPropertiesTest

results =

 1x2 TestResult array with properties:

 Name

 Passed

 Failed

 Incomplete

31 Unit Testing

31-28

 Duration

 Details

Totals:

 2 Passed, 0 Failed, 0 Incomplete.

 6.3907 seconds testing time.

Create Table of Test Results

To access functionality available to tables, create one from the TestResult object.

rt = table(results)

rt =

 Name Passed Failed Incomplete Duration Details

 _____________________________________ ______ ______ __________ ________ ____________

 'axesPropertiesTest/testDefaultXLim' true false false 3.9106 [1x1 struct]

 'axesPropertiesTest/surfaceColorTest' true false false 2.4801 [1x1 struct]

Export test results to an Excel® spreadsheet.

writetable(rt,'myTestResults.xls')

Sort the test results by increasing duration.

sortrows(rt,'Duration')

ans =

 Name Passed Failed Incomplete Duration Details

 _____________________________________ ______ ______ __________ ________ ____________

 'axesPropertiesTest/surfaceColorTest' true false false 2.4801 [1x1 struct]

 'axesPropertiesTest/testDefaultXLim' true false false 3.9106 [1x1 struct]

See Also
matlab.unittest.constraints | matlab.unittest.fixtures

 Write Test Using Setup and Teardown Functions

31-29

More About
• “Write Function-Based Unit Tests” on page 31-14
• “Types of Qualifications” on page 31-48

31 Unit Testing

31-30

Additional Topics for Function-Based Tests

In this section...

“Fixtures for Setup and Teardown Code” on page 31-30
“Test Logging and Verbosity” on page 31-31
“Test Suite Creation” on page 31-32
“Test Selection” on page 31-32
“Test Running” on page 31-33
“Programmatic Access of Test Diagnostics” on page 31-33
“Test Runner Customization” on page 31-34

Typically, with function-based tests, you create a test file and pass the file name to the
runtests function without explicitly creating a suite of Test objects. However, if you
create an explicit test suite, additional features are available in function-based testing.
These features include:

• Test logging and verbosity
• Test selection
• Plugins to customize the test runner

For additional functionality, consider using “Class-Based Unit Tests”.

Fixtures for Setup and Teardown Code

When writing tests, use the TestCase.applyFixture method to handle setup and teardown
code for actions such as:

• Changing the current working folder
• Adding a folder to the path
• Creating a temporary folder
• Suppressing the display of warnings

These fixtures take the place of manually coding the actions in the setupOnce,
teardownOnce, setup, and teardown functions of your function-based test.

 Additional Topics for Function-Based Tests

31-31

For example, if you manually write setup and teardown code to set up a temporary folder
for each test, and then you make that folder your current working folder, your setup and
teardown functions could look like this.

function setup(testCase)

% store current folder

testCase.TestData.origPath = pwd;

% create temporary folder

testCase.TestData.tmpFolder = ['tmpFolder' datestr(now,30)];

mkdir(testCase.TestData.tmpFolder)

% change to temporary folder

cd(testCase.TestData.tmpFolder)

end

function teardown(testCase)

% change to original folder

cd(testCase.TestData.origPath)

% delete temporary folder

rmdir(testCase.TestData.tmpFolder)

end

However, you also can use a fixture to replace both of those functions with just a modified
setup function. The fixture stores the information necessary to restore the initial state
and performs the teardown actions.

function setup(testCase)

% create temporary folder

f = testCase.applyFixture(matlab.unittest.fixtures.TemporaryFolderFixture);

% change to temporary folder

testCase.applyFixture(matlab.unittest.fixtures.CurrentFolderFixture(f.Folder));

end

Test Logging and Verbosity

Your test functions can use the TestCase.log method. By default, the test runner reports
diagnostics logged at verbosity level 1 (Terse). Use the LoggingPlugin.withVerbosity
method to respond to messages of other verbosity levels. Construct a TestRunner
object, add the LoggingPlugin, and run the suite with the TestRunner.run method. For

31 Unit Testing

31-32

more information on creating a test runner, see “Test Runner Customization” on page
31-34.

Test Suite Creation

Calling your function-based test returns a suite of Test objects. You also can use the
testsuite function or the TestSuite.fromFile method. If you want a particular test and
you know the test name, you can use TestSuite.fromName. If you want to create a suite
from all tests in a particular folder, you can use TestSuite.fromFolder.

Test Selection

With an explicit test suite, use selectors to refine your suite. Several of the selectors are
applicable only for class-based tests, but you can select tests for your suite based on the
test name:

• Use the 'Name' name-value pair argument in a suite generation method, such as
fromFile.

• Use a selectors instance and optional constraints instance.

Use these approaches in a suite generation method, such as fromFile, or create a suite
and filter it using the TestSuite.selectIf method. For example, in this listing, the four
values of suite are equivalent.

import matlab.unittest.selectors.HasName

import matlab.unittest.constraints.ContainsSubstring

import matlab.unittest.TestSuite.fromFile

f = 'rightTriTolTest.m';

selector = HasName(ContainsSubstring('Triangle'));

% fromFile, name-value pair

suite = TestSuite.fromFile(f,'Name','*Triangle*')

% fromFile, selector

suite = TestSuite.fromFile(f,selector)

% selectIf, name-value pair

fullSuite = TestSuite.fromFile(f);

suite = selectIf(fullSuite,'Name','*Triangle*')

 Additional Topics for Function-Based Tests

31-33

% selectIf, selector

fullSuite = TestSuite.fromFile(f);

suite = selectIf(fullSuite,selector)

If you use one of the suite creation methods with a selector or name-value pair, the
testing framework creates the filtered suite. If you use the TestSuite.selectIf method, the
testing framework creates a full test suite and then filters it. For large test suites, this
approach can have performance implications.

Test Running

There are several ways to run a function-based test.

To Run All Tests Use Function

In a file runtests with the name of the test file
In a suite TestSuite.run with the suite
In a suite with a custom test
runner

TestRunner.run. (See “Test Runner Customization” on
page 31-34.)

For more information, see “Run Tests for Various Workflows” on page 31-87.

Programmatic Access of Test Diagnostics

If you run tests with the runtests function or the run method of TestSuite or
TestCase, the test framework uses a DiagnosticsRecordingPlugin plugin that
records diagnostics on test results.

After you run tests, you can access recorded diagnostics via the DiagnosticRecord field
in the Details property on TestResult. For example, if your test results are stored in
the variable results, find the recorded diagnostics for the second test in the suite by
invoking records = result(2).Details.DiagnosticRecord.

The recorded diagnostics are DiagnosticRecord objects. To access particular types
of test diagnostics for a particular test, use the selectFailed, selectPassed,
selectIncomplete, and selectLogged methods of the DiagnosticRecord class.

By default, the DiagnosticsRecordingPlugin plugin records qualification failures
and logged events at the matlab.unittest.Verbosity.Terse level of verbosity. For
more information, see DiagnosticRecordingPlugin and DiagnosticRecord.

31 Unit Testing

31-34

Test Runner Customization

Use a TestRunner object to customize the way the framework runs a test suite. With a
TestRunner object you can:

• Produce no output in the command window using the withNoPlugins method.
• Run tests in parallel using the runInParallel method.
• Add plugins to the test runner using the addPlugin method.

For example,use test suite, suite, to create a silent test runner and run the tests with
the run method of TestRunner.

runner = matlab.unittest.TestRunner.withNoPlugins;

results = runner.run(suite);

Use plugins to customize the test runner further. For example, you can redirect output,
determine code coverage, or change how the test runner responds to warnings. For more
information, see “Add Plugin to Test Runner” on page 31-92 and the plugins classes.

See Also
matlab.unittest.TestCase | matlab.unittest.TestSuite |
matlab.unittest.constraints | matlab.unittest.diagnostics |
matlab.unittest.qualifications | matlab.unittest.selectors

Related Examples
• “Run Tests for Various Workflows” on page 31-87
• “Add Plugin to Test Runner” on page 31-92

 Author Class-Based Unit Tests in MATLAB

31-35

Author Class-Based Unit Tests in MATLAB
To test a MATLAB program, write a unit test using qualifications that are methods for
testing values and responding to failures.

In this section...

“The Test Class Definition” on page 31-35
“The Unit Tests” on page 31-35
“Additional Features for Advanced Test Classes” on page 31-37

The Test Class Definition

A test class must inherit from matlab.unittest.TestCase and contain a methods
block with the Test attribute. The methods block contains functions, each of which is a
unit test. A general, basic class definition follows.

%% Test Class Definition

classdef MyComponentTest < matlab.unittest.TestCase

 %% Test Method Block

 methods (Test)

 % includes unit test functions

 end

end

The Unit Tests

A unit test is a method that determines the correctness of a unit of software. Each unit
test is contained within a methods block. The function must accept a TestCase instance
as an input.

%% Test Class Definition

classdef MyComponentTest < matlab.unittest.TestCase

 %% Test Method Block

 methods (Test)

 %% Test Function

 function testASolution(testCase)

 %% Exercise function under test

 % act = the value from the function under test

31 Unit Testing

31-36

 %% Verify using test qualification

 % exp = your expected value

 % testCase.<qualification method>(act,exp);

 end

 end

end

Qualifications are methods for testing values and responding to failures. This table lists
the types of qualifications.

VerificationsUse this qualification
to produce and record
failures without throwing
an exception. The remaining
tests run to completion.

matlab.unittest.qualifications.Verifiable

AssumptionsUse this qualification to
ensure that a test runs only
when certain preconditions
are satisfied. However,
running the test without
satisfying the preconditions
does not produce a test
failure. When an assumption
failure occurs, the testing
framework marks the test as
filtered.

matlab.unittest.qualifications.Assumable

AssertionsUse this qualification
to ensure that the
preconditions of the current
test are met.

matlab.unittest.qualifications.Assertable

Fatal
assertions

Use this qualification when
the failure at the assertion
point renders the remainder
of the current test method
invalid or the state is
unrecoverable.

matlab.unittest.qualifications.FatalAssertable

The MATLAB Unit Testing Framework provides approximately 25 qualification methods
for each type of qualification. For example, use verifyClass or assertClass to test

 Author Class-Based Unit Tests in MATLAB

31-37

that a value is of an expected class, and use assumeTrue or fatalAssertTrue to
test if the actual value is true. For a summary of qualification methods, see “Types of
Qualifications” on page 31-48.

Often, each unit test function obtains an actual value by exercising the code that you are
testing and defines the associated expected value. For example, if you are testing the
plus function, the actual value might be plus(2,3) and the expected value 5. Within
the test function, you pass the actual and expected values to a qualification method. For
example:

testCase.verifyEqual(plus(2,3),5)

For an example of a basic unit test, see “Write Simple Test Case Using Classes” on page
31-39.

Additional Features for Advanced Test Classes

The MATLAB Unit Testing Framework includes several features for authoring more
advanced test classes:

• Setup and teardown methods blocks to implicitly set up the pretest state of the
system and return it to the original state after running the tests. For an example of a
test class with setup and teardown code, see “Write Setup and Teardown Code Using
Classes” on page 31-44.

• Advanced qualification features, including actual value proxies, test diagnostics, and
a constraint interface. For more information, see matlab.unittest.constraints
and matlab.unittest.diagnostics.

• Parameterized tests to combine and execute tests on the specified lists of parameters.
For more information, see “Create Basic Parameterized Test” on page 31-70 and
“Create Advanced Parameterized Test” on page 31-76.

• Ready-to-use fixtures for handling the setup and teardown of frequently used
testing actions and for sharing fixtures between classes. For more information, see
matlab.unittest.fixtures and “Write Tests Using Shared Fixtures” on page
31-56.

• Ability to create custom test fixtures. For more information see “Create Basic Custom
Fixture” on page 31-60 and “Create Advanced Custom Fixture” on page 31-63.

Related Examples
• “Write Simple Test Case Using Classes” on page 31-39

31 Unit Testing

31-38

• “Write Setup and Teardown Code Using Classes” on page 31-44
• “Create Simple Test Suites” on page 31-84
• “Run Tests for Various Workflows” on page 31-87
• “Analyze Test Case Results” on page 31-114
• “Analyze Failed Test Results” on page 31-117

 Write Simple Test Case Using Classes

31-39

Write Simple Test Case Using Classes

This example shows how to write a unit test for a MATLAB® function,
quadraticSolver.m.

Create quadraticSolver.m Function

The following MATLAB function solves quadratic equations. Create this function in a
folder on your MATLAB path.

% Copyright 2015 The MathWorks, Inc.

function roots = quadraticSolver(a, b, c)

% quadraticSolver returns solutions to the

% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')

 error('quadraticSolver:InputMustBeNumeric', ...

 'Coefficients must be numeric.');

end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);

roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create SolverTest Class Definition

To use the matlab.unittest framework, write MATLAB functions (tests) in the form of
a test case, a class derived from matlab.unittest.TestCase.

Create a subclass, SolverTest.

% Copyright 2015 The MathWorks, Inc.

classdef SolverTest < matlab.unittest.TestCase

 methods (Test)

31 Unit Testing

31-40

 end

end

The following steps show how to create specific tests. Put these tests inside the methods
block with the (Test) attribute.

Create Test Method for Real Solutions

Create a test method, testRealSolution, to verify that quadraticSolver returns
the right value for real solutions. For example, the equation has real
solutions and . This method calls quadraticSolver with the inputs of this
equation. The solution, expSolution, is [2,1].

Use the matlab.unittest.TestCase method, verifyEqual to compare the output
of the function, actSolution, to the desired output, expSolution. If the qualification
fails, the test continues execution.

% Copyright 2015 The MathWorks, Inc.

function testRealSolution(testCase)

 actSolution = quadraticSolver(1,-3,2);

 expSolution = [2,1];

 testCase.verifyEqual(actSolution,expSolution)

end

Add this function inside the methods (Test) block.

Create Test Method for Imaginary Solutions

Create a test to verify that quadraticSolver returns the right value for imaginary
solutions. For example, the equation has imaginary solutions

 and . Add this function, testImaginarySolution, inside the
methods (Test) block.

% Copyright 2015 The MathWorks, Inc.

 Write Simple Test Case Using Classes

31-41

function testImaginarySolution(testCase)

 actSolution = quadraticSolver(1,2,10);

 expSolution = [-1+3i, -1-3i];

 testCase.verifyEqual(actSolution,expSolution)

end

The order of the tests within the block does not matter.

Save Class Definition

The following is the complete SolverTest class definition. Save this file in a folder on
your MATLAB path.

% Copyright 2015 The MathWorks, Inc.

classdef SolverTest < matlab.unittest.TestCase

 % SolverTest tests solutions to the quadratic equation

 % a*x^2 + b*x + c = 0

 methods (Test)

 function testRealSolution(testCase)

 actSolution = quadraticSolver(1,-3,2);

 expSolution = [2,1];

 testCase.verifyEqual(actSolution,expSolution);

 end

 function testImaginarySolution(testCase)

 actSolution = quadraticSolver(1,2,10);

 expSolution = [-1+3i, -1-3i];

 testCase.verifyEqual(actSolution,expSolution);

 end

 end

end

Run Tests in SolverTest Test Case

Run all the tests in the SolverTest class definition file.

testCase = SolverTest;

res = run(testCase)

31 Unit Testing

31-42

Running SolverTest

..

Done SolverTest

res =

 1x2 TestResult array with properties:

 Name

 Passed

 Failed

 Incomplete

 Duration

 Details

Totals:

 2 Passed, 0 Failed, 0 Incomplete.

 0.65795 seconds testing time.

Run Single Test Method

To run the single test, testRealSolution:

testCase = SolverTest;

res = run(testCase,'testRealSolution')

Running SolverTest

.

Done SolverTest

res =

 TestResult with properties:

 Name: 'SolverTest/testRealSolution'

 Passed: 1

 Failed: 0

 Incomplete: 0

 Duration: 0.0243

 Details: [1x1 struct]

 Write Simple Test Case Using Classes

31-43

Totals:

 1 Passed, 0 Failed, 0 Incomplete.

 0.024254 seconds testing time.

Related Examples
• “Author Class-Based Unit Tests in MATLAB” on page 31-35
• “Write Setup and Teardown Code Using Classes” on page 31-44
• “Analyze Test Case Results” on page 31-114
• “Create Simple Test Suites” on page 31-84

31 Unit Testing

31-44

Write Setup and Teardown Code Using Classes

In this section...

“Test Fixtures” on page 31-44
“Test Case with Method-Level Setup Code” on page 31-44
“Test Case with Class-Level Setup Code” on page 31-45

Test Fixtures

Test fixtures are setup and teardown code that sets up the pretest state of the system and
returns it to the original state after running the test. Setup and teardown methods are
defined in the TestCase class by the following method attributes:

• TestMethodSetup and TestMethodTeardown methods run before and after each
test method.

• TestClassSetup and TestClassTeardown methods run before and after all test
methods in the test case.

The testing framework guarantees that TestMethodSetup and TestClassSetup
methods of superclasses are executed before those in subclasses.

It is good practice for test authors to perform all teardown activities from within the
TestMethodSetup and TestClassSetup blocks using the addTeardown method
instead of implementing corresponding teardown methods in the TestMethodTeardown
and TestClassTeardown blocks. This guarantees the teardown is executed in the
reverse order of the setup and also ensures that the test content is exception safe.

Test Case with Method-Level Setup Code

The following test case, FigurePropertiesTest, contains setup code at the
method level. The TestMethodSetup method creates a figure before running
each test, and TestMethodTeardown closes the figure afterwards. As discussed
previously, you should try to define teardown activities with the addTeardown method.
However, for illustrative purposes, this example shows the implementation of a
TestMethodTeardown block.

classdef FigurePropertiesTest < matlab.unittest.TestCase

 Write Setup and Teardown Code Using Classes

31-45

 properties

 TestFigure

 end

 methods(TestMethodSetup)

 function createFigure(testCase)

 % comment

 testCase.TestFigure = figure;

 end

 end

 methods(TestMethodTeardown)

 function closeFigure(testCase)

 close(testCase.TestFigure)

 end

 end

 methods(Test)

 function defaultCurrentPoint(testCase)

 cp = testCase.TestFigure.CurrentPoint;

 testCase.verifyEqual(cp, [0 0], ...

 'Default current point is incorrect')

 end

 function defaultCurrentObject(testCase)

 import matlab.unittest.constraints.IsEmpty

 co = testCase.TestFigure.CurrentObject;

 testCase.verifyThat(co, IsEmpty, ...

 'Default current object should be empty')

 end

 end

end

Test Case with Class-Level Setup Code

The following test case, BankAccountTest, contains setup code at the class level.

To setup the BankAccountTest, which tests the BankAccount class example described
in “Developing Classes — Typical Workflow”, add a TestClassSetup method,

31 Unit Testing

31-46

addBankAccountClassToPath. This method adds the path to the BankAccount
example file. Typically, you set up the path using a PathFixture. this example performs
the setup and teardown activities manually for illustrative purposes.

classdef BankAccountTest < matlab.unittest.TestCase

 % Tests the BankAccount class.

 methods (TestClassSetup)

 function addBankAccountClassToPath(testCase)

 p = path;

 testCase.addTeardown(@path,p);

 addpath(fullfile(matlabroot,'help','techdoc','matlab_oop',...

 'examples'));

 end

 end

 methods (Test)

 function testConstructor(testCase)

 b = BankAccount(1234, 100);

 testCase.verifyEqual(b.AccountNumber, 1234, ...

 'Constructor failed to correctly set account number');

 testCase.verifyEqual(b.AccountBalance, 100, ...

 'Constructor failed to correctly set account balance');

 end

 function testConstructorNotEnoughInputs(testCase)

 import matlab.unittest.constraints.Throws;

 testCase.verifyThat(@()BankAccount, ...

 Throws('MATLAB:minrhs'));

 end

 function testDesposit(testCase)

 b = BankAccount(1234, 100);

 b.deposit(25);

 testCase.verifyEqual(b.AccountBalance, 125);

 end

 function testWithdraw(testCase)

 b = BankAccount(1234, 100);

 b.withdraw(25);

 testCase.verifyEqual(b.AccountBalance, 75);

 end

 function testNotifyInsufficientFunds(testCase)

 Write Setup and Teardown Code Using Classes

31-47

 callbackExecuted = false;

 function testCallback(~,~)

 callbackExecuted = true;

 end

 b = BankAccount(1234, 100);

 b.addlistener('InsufficientFunds', @testCallback);

 b.withdraw(50);

 testCase.assertFalse(callbackExecuted, ...

 'The callback should not have executed yet');

 b.withdraw(60);

 testCase.verifyTrue(callbackExecuted, ...

 'The listener callback should have fired');

 end

 end

end

See Also
matlab.unittest.TestCase | addTeardown

Related Examples
• “Author Class-Based Unit Tests in MATLAB” on page 31-35
• “Write Simple Test Case Using Classes” on page 31-39

31 Unit Testing

31-48

Types of Qualifications

Qualifications are functions for testing values and responding to failures. There are four
types of qualifications:

• Verifications — Produce and record failures without throwing an exception, meaning
the remaining tests run to completion.

• Assumptions — Ensure that a test runs only when certain preconditions are satisfied
and the event should not produce a test failure. When an assumption failure occurs,
the testing framework marks the test as filtered.

• Assertions — Ensure that the preconditions of the current test are met.
• Fatal assertions — Use this qualification when the failure at the assertion

point renders the remainder of the current test method invalid or the state is
unrecoverable.

Type of Test Verification Assumption Assertion Fatal Assertion

Value is true. verifyTrue assumeTrue assertTrue fatalAssertTrue
Value is false. verifyFalse assumeFalse assertFalse fatalAssertFalse
Value is equal to
specified value.

verifyEqual assumeEqual assertEqual fatalAssertEqual

Value is
not equal to
specified value.

verifyNotEqual assumeNotEqual assertNotEqual fatalAssertNotEqual

Two values are
handles to same
instance.

verifySameHandle assumeSameHandleassertSameHandle fatalAssertSameHandle

Value is not
handle to
specified
instance.

verifyNotSameHandleassumeNotSameHandleassertNotSameHandlefatalAssertNotSameHandle

Function
returns true
when evaluated.

verifyReturnsTrue assumeReturnsTrueassertReturnsTrue fatalAssertReturnsTrue

Test produces
unconditional
failure.

verifyFail assumeFail assertFail fatalAssertFail

 Types of Qualifications

31-49

Type of Test Verification Assumption Assertion Fatal Assertion

Value meets
given constraint.

verifyThat assumeThat assertThat fatalAssertThat

Value is greater
than specified
value.

verifyGreaterThan assumeGreaterThanassertGreaterThan fatalAssertGreaterThan

Value is greater
than or equal to
specified value.

verifyGreaterThanOrEqualassumeGreaterThanOrEqualassertGreaterThanOrEqualfatalAssertGreaterThanOrEqual

Value is less
than specified
value.

verifyLessThan assumeLessThan assertLessThan fatalAssertLessThan

Value is less
than or equal to
specified value.

verifyLessThanOrEqualassumeLessThanOrEqualassertLessThanOrEqualfatalAssertLessThanOrEqual

Value is exact
specified class.

verifyClass assumeClass assertClass fatalAssertClass

Value is object of
specified type.

verifyInstanceOf assumeInstanceOf assertInstanceOf fatalAssertInstanceOf

Value is empty. verifyEmpty assumeEmpty assertEmpty fatalAssertEmpty
Value is not
empty.

verifyNotEmpty assumeNotEmpty assertNotEmpty fatalAssertNotEmpty

Value has
specified size.

verifySize assumeSize assertSize fatalAssertSize

Value has
specified length.

verifyLength assumeLength assertLength fatalAssertLength

Value has
specified
element count.

verifyNumElementsassumeNumElementsassertNumElementsfatalAssertNumElements

String contains
specified string.

verifySubstring assumeSubstring assertSubstring fatalAssertSubstring

Text matches
specified regular
expression.

verifyMatches assumeMatches assertMatches fatalAssertMatches

31 Unit Testing

31-50

Type of Test Verification Assumption Assertion Fatal Assertion

Function
throws specified
exception.

verifyError assumeError assertError fatalAssertError

Function
issues specified
warning.

verifyWarning assumeWarning assertWarning fatalAssertWarning

Function issues
no warnings.

verifyWarningFree assumeWarningFreeassertWarningFree fatalAssertWarningFree

See Also
Assertable | Assumable | FatalAssertable | matlab.unittest.qualifications |
Verifiable

 Tag Unit Tests

31-51

Tag Unit Tests

You can use test tags to group tests into categories and then run tests with specified tags.
Typical test tags identify a particular feature or describe the type of test.

In this section...

“Tag Tests” on page 31-51
“Select and Run Tests” on page 31-52

Tag Tests

To define test tags, use a cell array of meaningful character vectors. For example,
TestTags = {'Unit'} or TestTags = {'Unit','FeatureA'}.

• To tag individual tests, use the TestTags method attribute.
• To tag all the tests within a class, use the TestTags class attribute. If you use the

TestTags class attribute in a superclass, tests in the subclasses inherit the tags.

This sample test class, ExampleTagTest, uses the TestTags method attribute to tag
individual tests.

classdef ExampleTagTest < matlab.unittest.TestCase

 methods (Test)

 function testA (testCase)

 % test code

 end

 end

 methods (Test, TestTags = {'Unit'})

 function testB (testCase)

 % test code

 end

 function testC (testCase)

 % test code

 end

 end

 methods (Test, TestTags = {'Unit','FeatureA'})

 function testD (testCase)

 % test code

 end

 end

31 Unit Testing

31-52

 methods (Test, TestTags = {'System','FeatureA'})

 function testE (testCase)

 % test code

 end

 end

end

Several of the tests in class ExampleTagTest are tagged. For example, testD is tagged
with 'Unit' and 'FeatureA'. One test, testA, is not tagged.

This sample test class, ExampleTagClassTest, uses a TestTags class attribute to tag
all the tests within the class, and a TestTags method attribute to add tags to individual
tests.

classdef (TestTags = {'FeatureB'}) ...

 ExampleTagClassTest < matlab.unittest.TestCase

 methods (Test)

 function testF (testCase)

 % test code

 end

 end

 methods (Test, TestTags = {'FeatureC','System'})

 function testG (testCase)

 % test code

 end

 end

 methods (Test, TestTags = {'System','FeatureA'})

 function testH (testCase)

 % test code

 end

 end

end

Each test in class ExampleTagClassTest is tagged with 'FeatureB'. Additionally,
individual tests are tagged with various tags including 'FeatureA', 'FeatureC', and
'System'.

Select and Run Tests

There are three ways of selecting and running tagged tests:

• “Run Selected Tests Using runtests” on page 31-53
• “Select Tests Using TestSuite Methods” on page 31-53

 Tag Unit Tests

31-53

• “Select Tests Using HasTag Selector” on page 31-54

Run Selected Tests Using runtests

Use the runtests function to select and run tests without explicitly creating a test suite.
Select and run all the tests from ExampleTagTest and ExampleTagClassTest that
include the 'FeatureA' tag.

results = runtests({'ExampleTagTest','ExampleTagClassTest'},'Tag','FeatureA');

Running ExampleTagTest

..

Done ExampleTagTest

Running ExampleTagClassTest

.

Done ExampleTagClassTest

runtests selected and ran three tests.

Display the results in a table.

table(results)

ans =

 Name Passed Failed Incomplete Duration Details

 ___________________________ ______ ______ __________ __________ ____________

 'ExampleTagTest/testE' true false false 0.00063898 [1x1 struct]

 'ExampleTagTest/testD' true false false 0.00018533 [1x1 struct]

 'ExampleTagClassTest/testH' true false false 0.00054603 [1x1 struct]

The selected tests are testE and testD from ExampleTagTest, and testH from
ExampleTagClassTest.

Select Tests Using TestSuite Methods

Create a suite of tests from the ExampleTagTest class that are tagged with
'FeatureA'.

import matlab.unittest.TestSuite

sA = TestSuite.fromClass(?ExampleTagTest,'Tag','FeatureA');

31 Unit Testing

31-54

Create a suite of tests from the ExampleTagClassTest class that are tagged with
'FeatureC'.

sB = TestSuite.fromFile('ExampleTagClassTest.m','Tag','FeatureC');

Concatenate the suite and view the names of the tests.

suite = [sA sB];

{suite.Name}'

ans =

 'ExampleTagTest/testE'

 'ExampleTagTest/testD'

 'ExampleTagClassTest/testG'

Select Tests Using HasTag Selector

Create a suite of all the tests from the ExampleTagTest and ExampleTagClassTest
classes.

import matlab.unittest.selectors.HasTag

sA = TestSuite.fromClass(?ExampleTagTest);

sB = TestSuite.fromFile('ExampleTagClassTest.m');

suite = [sA sB];

Select all the tests that do not have tags.

s1 = suite.selectIf(~HasTag)

s1 =

 Test with properties:

 Name: 'ExampleTagTest/testA'

 BaseFolder: 'C:\work'

 Parameterization: [0x0 matlab.unittest.parameters.EmptyParameter]

 SharedTestFixtures: [0x0 matlab.unittest.fixtures.EmptyFixture]

 Tags: {1x0 cell}

Tests Include:

 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Select all the tests with the 'Unit' tag and display their names.

s2 = suite.selectIf(HasTag('Unit'));

 Tag Unit Tests

31-55

{s2.Name}'

ans =

 'ExampleTagTest/testD'

 'ExampleTagTest/testB'

 'ExampleTagTest/testC'

Select all the tests with the 'FeatureB' or 'System' tag using a constraint.

import matlab.unittest.constraints.IsEqualTo

constraint = IsEqualTo('FeatureB') | IsEqualTo('System');

s3 = suite.selectIf(HasTag(constraint));

{s3.Name}'

ans =

 'ExampleTagTest/testE'

 'ExampleTagClassTest/testH'

 'ExampleTagClassTest/testG'

 'ExampleTagClassTest/testF'

See Also
matlab.unittest.selectors.HasTag | matlab.unittest.TestSuite | matlab.unittest.TestCase
| matlab.unittest.constraints | runtests

31 Unit Testing

31-56

Write Tests Using Shared Fixtures

This example shows how to use shared fixtures when creating tests. You can share test
fixtures across test classes using the SharedTestFixtures attribute of the TestCase
class. To exemplify this attribute, create multiple test classes in a subdirectory of your
current working folder. The test methods are shown only at a high level.

The two test classes used in this example test the DocPolynom class and the
BankAccount class. You can access both classes in MATLAB, but you must add them to
the MATLAB path. A path fixture adds the directory to the current path, runs the tests,
and removes the directory from the path. Since both classes require the same addition to
the path, the tests use a shared fixture.

Create a Test for the DocPolynom Class

Create a test file for the DocPolynom class. Create the shared fixture by specifying the
SharedTestFixtures attribute for the TestCase and passing in a PathFixture.

DocPolynomTest Class Definition File

classdef (SharedTestFixtures={matlab.unittest.fixtures.PathFixture(...

 fullfile(matlabroot,'help','techdoc','matlab_oop','examples'))}) ...

 DocPolynomTest < matlab.unittest.TestCase

 % Tests the DocPolynom class.

 properties

 msgEqn = 'Equation under test: ';

 end

 methods (Test)

 function testConstructor(testCase)

 p = DocPolynom([1, 0, 1]);

 testCase.verifyClass(p, ?DocPolynom)

 end

 function testAddition(testCase)

 p1 = DocPolynom([1, 0, 1]);

 p2 = DocPolynom([5, 2]);

 actual = p1 + p2;

 expected = DocPolynom([1, 5, 3]);

 msg = [testCase.msgEqn,...

 Write Tests Using Shared Fixtures

31-57

 '(x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3'];

 testCase.verifyEqual(actual, expected, msg)

 end

 function testMultiplication(testCase)

 p1 = DocPolynom([1, 0, 3]);

 p2 = DocPolynom([5, 2]);

 actual = p1 * p2;

 expected = DocPolynom([5, 2, 15, 6]);

 msg = [testCase.msgEqn,...

 '(x^2 + 3) * (5*x + 2) = 5*x^3 + 2*x^2 + 15*x + 6'];

 testCase.verifyEqual(actual, expected, msg)

 end

 end

end

Create a Test for the BankAccount Class

Create a test file for the BankAccount class. Create the shared fixture by specifying the
SharedTestFixtures attribute for the TestCase and passing in a PathFixture.

BankAccountTest Class Definition File

classdef (SharedTestFixtures={matlab.unittest.fixtures.PathFixture(...

 fullfile(matlabroot, 'help', 'techdoc', 'matlab_oop', ...

 'examples'))}) BankAccountTest < matlab.unittest.TestCase

 % Tests the BankAccount class.

 methods (Test)

 function testConstructor(testCase)

 b = BankAccount(1234, 100);

 testCase.verifyEqual(b.AccountNumber, 1234, ...

 'Constructor failed to correctly set account number')

 testCase.verifyEqual(b.AccountBalance, 100, ...

 'Constructor failed to correctly set account balance')

 end

 function testConstructorNotEnoughInputs(testCase)

 import matlab.unittest.constraints.Throws

 testCase.verifyThat(@()BankAccount, ...

 Throws('MATLAB:minrhs'))

 end

31 Unit Testing

31-58

 function testDesposit(testCase)

 b = BankAccount(1234, 100);

 b.deposit(25)

 testCase.verifyEqual(b.AccountBalance, 125)

 end

 function testWithdraw(testCase)

 b = BankAccount(1234, 100);

 b.withdraw(25)

 testCase.verifyEqual(b.AccountBalance, 75)

 end

 function testNotifyInsufficientFunds(testCase)

 callbackExecuted = false;

 function testCallback(~,~)

 callbackExecuted = true;

 end

 b = BankAccount(1234, 100);

 b.addlistener('InsufficientFunds', @testCallback);

 b.withdraw(50)

 testCase.assertFalse(callbackExecuted, ...

 'The callback should not have executed yet')

 b.withdraw(60)

 testCase.verifyTrue(callbackExecuted, ...

 'The listener callback should have fired')

 end

 end

end

Build the Test Suite

The classes DocPolynomTest.m and BankAccountTest.m are in your working
directory. Create a test suite from your current working directory. If you have additional
tests, they are included in the suite when you use the TestSuite.fromFolder method.
Create the test suite at the command prompt.

import matlab.unittest.TestSuite;

suiteFolder = TestSuite.fromFolder(pwd);

Run the Tests

At the command prompt, run the tests in the test suite.

 Write Tests Using Shared Fixtures

31-59

result = run(suiteFolder);

Setting up PathFixture.

Description: Adds 'C:\Program Files\MATLAB\R2013b\help\techdoc\matlab_oop\examples' to the path.

Running BankAccountTest

.....

Done BankAccountTest

Running DocPolynomTest

...

Done DocPolynomTest

Tearing down PathFixture.

Description: Restores the path to its previous state.

The test framework sets up the test fixture, runs all the tests in each file, and then tears
the fixture down. If the path fixture was set up and torn down using TestClassSetup
methods, the fixture is set up and torn down twice—once for each test file.

See Also
matlab.unittest.fixtures | PathFixture | TestCase

31 Unit Testing

31-60

Create Basic Custom Fixture

This example shows how to create a basic custom fixture that changes the display format
to hexadecimal representation. The example also shows to use the fixture to test a
function that displays a column of numbers as text. After the testing completes, the
framework restores the display format to its pretest state.

Create FormatHexFixture Class Definition

In a file in your working folder, create a new class, FormatHexFixture that inherits
from the matlab.unittest.fixtures.Fixture class. Since we want the fixture to
restore the pretest state of the MATLAB display format, create an OriginalFormat
property to keep track of the original display format.

classdef FormatHexFixture < matlab.unittest.fixtures.Fixture

 properties (Access=private)

 OriginalFormat

 end

Implement Setup and Teardown Methods

Subclasses of the Fixture class must implement the setup method. Use this method
to record the pretest display format, and set the format to 'hex'. Use the teardown
method to restore the original display format. Define the setup and teardown methods
in the methods block of the FormatHexFixture.m file.

 methods

 function setup(fixture)

 fixture.OriginalFormat = get(0, 'Format');

 set(0, 'Format', 'hex')

 end

 function teardown(fixture)

 set(0, 'Format', fixture.OriginalFormat)

 end

 end

end

Apply Custom Fixture

In a file in your working folder, create the following test class, SampleTest.m.

classdef SampleTest < matlab.unittest.TestCase

 methods (Test)

 Create Basic Custom Fixture

31-61

 function test1(testCase)

 testCase.applyFixture(FormatHexFixture);

 actStr = getColumnForDisplay([1;2;3], 'Small Integers');

 expStr = ['Small Integers '

 '3ff0000000000000'

 '4000000000000000'

 '4008000000000000'];

 testCase.verifyEqual(actStr, expStr)

 end

 end

end

function str = getColumnForDisplay(values, title)

elements = cell(numel(values)+1, 1);

elements{1} = title;

for idx = 1:numel(values)

 elements{idx+1} = displayNumber(values(idx));

end

str = char(elements);

end

function str = displayNumber(n)

str = strtrim(evalc('disp(n);'));

end

This test applies the custom fixture and verifies that the displayed column of
hexadecimal representation is as expected.

At the command prompt, run the test.

run(SampleTest);

Running SampleTest

.

Done SampleTest

See Also
matlab.unittest.fixtures.Fixture

Related Examples
• “Create Advanced Custom Fixture” on page 31-63

31 Unit Testing

31-62

• “Write Tests Using Shared Fixtures” on page 31-56

 Create Advanced Custom Fixture

31-63

Create Advanced Custom Fixture

This example shows how to create a custom fixture that sets an environment variable.
Prior to testing, this fixture will save the current UserName variable.

Create UserNameEnvironmentVariableFixture Class Definition

In a file in your working folder, create a new class,
UserNameEnvironmentVariableFixture that inherits from the
matlab.unittest.fixtures.Fixture class. Since you want to pass the fixture a user
name, create a UserName property to pass the data between methods.
classdef UserNameEnvironmentVariableFixture < ...

 matlab.unittest.fixtures.Fixture

 properties (SetAccess=private)

 UserName

 end

Define Fixture Constructor

In the methods block of the UserNameEnvironmentVariableFixture.m file, create a
constructor method that validates the input and defines the SetupDescription. Have
the constructor accept a character vector and set the fixture’s UserName property.
 methods

 function fixture = UserNameEnvironmentVariableFixture(name)

 validateattributes(name, {'char'}, {'row'}, '','UserName')

 fixture.UserName = name;

 fixture.SetupDescription = sprintf(...

 'Set the UserName environment variable to "%s".',...

 fixture.UserName);

 end

Implement setup Method

Subclasses of the Fixture class must implement the setup method. Use this
method to save the original UserName variable. This method also defines the
TeardownDescription and registers the teardown task of setting the UserName to the
original state after testing.

Define the setup method within the methods block of the
UserNameEnvironmentVariableFixture.m file.
 function setup(fixture)

 originalUserName = getenv('UserName');

 fixture.assertNotEmpty(originalUserName, ...

31 Unit Testing

31-64

 'An existing UserName environment variable must be defined.')

 fixture.addTeardown(@setenv, 'UserName', originalUserName)

 fixture.TeardownDescription = sprintf(...

 'Restored the UserName environment variable to "%s".',...

 originalUserName);

 setenv('UserName', fixture.UserName)

 end

 end

Implement isCompatible Method

Classes that derive from Fixture must implement the isCompatible method
if the constructor is configurable. Since you can configure the UserName property
through the constructor, UserNameEnvironmentVariableFixture must implement
isCompatible.

The isCompatible method is called with two instances of the same class. In this case, it
is called with two instances of UserNameEnvironmentVariableFixture. The testing
framework considers the two instances compatible if their UserName properties are
equal.

In a new methods block within UserNameEnvironmentVariableFixture.m, define an
isCompatible method which returns logical 1 (true) or logical 0 (false).
 methods (Access=protected)

 function bool = isCompatible(fixture, other)

 bool = strcmp(fixture.UserName, other.UserName);

 end

 end

Fixture Class Definition Summary

Below are the complete contents of UserNameEnvironmentVariableFixture.m.
classdef UserNameEnvironmentVariableFixture < ...

 matlab.unittest.fixtures.Fixture

 properties (SetAccess=private)

 UserName

 end

 methods

 function fixture = UserNameEnvironmentVariableFixture(name)

 validateattributes(name, {'char'}, {'row'}, '','UserName')

 fixture.UserName = name;

 fixture.SetupDescription = sprintf(...

 'Set the UserName environment variable to "%s".',...

 fixture.UserName);

 end

 Create Advanced Custom Fixture

31-65

 function setup(fixture)

 originalUserName = getenv('UserName');

 fixture.assertNotEmpty(originalUserName, ...

 'An existing UserName environment variable must be defined.')

 fixture.addTeardown(@setenv, 'UserName', originalUserName)

 fixture.TeardownDescription = sprintf(...

 'Restored the UserName environment variable to "%s".',...

 originalUserName);

 setenv('UserName', fixture.UserName)

 end

 end

 methods (Access=protected)

 function bool = isCompatible(fixture, other)

 bool = strcmp(fixture.UserName, other.UserName);

 end

 end

end

Apply Custom Fixture to Single Test Class

In a file in your working folder, create the following test class, ExampleTest.m.

classdef ExampleTest < matlab.unittest.TestCase

 methods(TestMethodSetup)

 function mySetup(testCase)

 testCase.applyFixture(...

 UserNameEnvironmentVariableFixture('David'));

 end

 end

 methods (Test)

 function t1(~)

 fprintf(1, 'Current UserName: "%s"', getenv('UserName'))

 end

 end

end

This test uses the UserNameEnvironmentVariableFixture for each test in the
ExampleTest class.

At the command prompt, run the test.

run(ExampleTest);

Running ExampleTest

Current UserName: "David".

Done ExampleTest

31 Unit Testing

31-66

Apply Custom Fixture as Shared Fixture

In your working folder, create three test classes using a shared fixture. Using a shared
fixture allows the UserNameEnvironmentVariableFixture to be shared across
classes.

Create testA.m as follows.

classdef (SharedTestFixtures={...

 UserNameEnvironmentVariableFixture('David')}) ...

 testA < matlab.unittest.TestCase

 methods (Test)

 function t1(~)

 fprintf(1, 'Current UserName: "%s"', getenv('UserName'))

 end

 end

end

Create testB.m as follows.

classdef (SharedTestFixtures={...

 UserNameEnvironmentVariableFixture('Andy')}) ...

 testB < matlab.unittest.TestCase

 methods (Test)

 function t1(~)

 fprintf(1, 'Current UserName: "%s"', getenv('UserName'))

 end

 end

end

Create testC.m as follows.

classdef (SharedTestFixtures={...

 UserNameEnvironmentVariableFixture('Andy')}) ...

 testC < matlab.unittest.TestCase

 methods (Test)

 function t1(~)

 fprintf(1, 'Current UserName: "%s"', getenv('UserName'))

 end

 end

end

At the command prompt, run the tests.

runtests({'testA','testB','testC'});

 Create Advanced Custom Fixture

31-67

Setting up UserNameEnvironmentVariableFixture

Done setting up UserNameEnvironmentVariableFixture: Set the UserName environment variable to "David".

Running testA

Current UserName: "David".

Done testA

Tearing down UserNameEnvironmentVariableFixture

Done tearing down UserNameEnvironmentVariableFixture: Restored the UserName environment variable to "Kim".

Setting up UserNameEnvironmentVariableFixture

Done setting up UserNameEnvironmentVariableFixture: Set the UserName environment variable to "Andy".

Running testB

Current UserName: "Andy".

Done testB

Running testC

Current UserName: "Andy".

Done testC

Tearing down UserNameEnvironmentVariableFixture

Done tearing down UserNameEnvironmentVariableFixture: Restored the UserName environment variable to "Kim".

Recall that the fixtures are compatible if their UserName properties match. The tests
in testA and testB use incompatible shared fixtures, since 'David' is not equal to
'Andy'. Therefore, the framework invokes the fixture teardown and setup methods
between calls to testA and testB. However, the shared test fixture in testC is
compatible with the fixture in testB, so the framework doesn’t repeat fixture teardown
and setup before testC.

Alternative Approach to Calling addTeardown in setup Method

An alternate approach to using the addTeardown method within the setup method
is to implement a separate teardown method . Instead of the setup method
described above, implement the following setup and teardown methods within
UserNameEnvironmentVariableFixture.m.

31 Unit Testing

31-68

Alternate UserNameEnvironmentVariableFixture Class Definition

classdef UserNameEnvironmentVariableFixture < ...

 matlab.unittest.fixtures.Fixture

 properties (Access=private)

 OriginalUser

 end

 properties (SetAccess=private)

 UserName

 end

 methods

 function fixture = UserNameEnvironmentVariableFixture(name)

 validateattributes(name, {'char'}, {'row'}, '','UserName')

 fixture.UserName = name;

 fixture.SetupDescription = sprintf(...

 'Set the UserName environment variable to "%s".',...

 fixture.UserName);

 end

 function setup(fixture)

 fixture.OriginalUser = getenv('UserName');

 fixture.assertNotEmpty(fixture.OriginalUser, ...

 'An existing UserName environment variable must be defined.')

 setenv('UserName', fixture.UserName)

 end

 function teardown(fixture)

 fixture.TeardownDescription = sprintf(...

 'Restored the UserName environment variable to "%s".',...

 fixture.OriginalUser);

 setenv('UserName', fixture.OriginalUser)

 end

 end

 methods (Access=protected)

 function bool = isCompatible(fixture, other)

 bool = strcmp(fixture.UserName, other.UserName);

 end

 end

end

The setup method does not contain a call to addTeardown or a definition for
TeardownDescription. These tasks are relegated to the teardown method. The
alternative class definition contains an additional property, OriginalUser, which
allows the information to be passed between methods.

See Also
matlab.unittest.fixtures.Fixture

 Create Advanced Custom Fixture

31-69

Related Examples
• “Create Basic Custom Fixture” on page 31-60
• “Write Tests Using Shared Fixtures” on page 31-56

31 Unit Testing

31-70

Create Basic Parameterized Test

This example shows how to create a basic parameterized test.

Create Function to Test

In your working folder, create a function in the file sierpinski.m. This function returns
a matrix representing an image of a Sierpinski carpet fractal. It takes as input the fractal
level and an optional data type.

function carpet = sierpinski(nLevels,classname)

if nargin == 1

 classname = 'single';

end

mSize = 3^nLevels;

carpet = ones(mSize,classname);

cutCarpet(1,1,mSize,nLevels) % begin recursion

 function cutCarpet(x,y,s,cL)

 if cL

 ss = s/3; % define subsize

 for lx = 0:2

 for ly = 0:2

 if lx == 1 && ly == 1

 % remove center square

 carpet(x+ss:x+2*ss-1,y+ss:y+2*ss-1) = 0;

 else

 % recurse

 cutCarpet(x + lx*ss, y + ly*ss, ss, cL-1)

 end

 end

 end

 end

 end

end

Create TestCarpet Test Class

In a file in your working folder, create a new class, TestCarpet, to test the sierpinski
function.

classdef TestCarpet < matlab.unittest.TestCase

 Create Basic Parameterized Test

31-71

Define properties Block

Define the properties used for parameterized testing. In the TestCarpet class, define
these properties in a property block with the TestParameter attribute.

 properties (TestParameter)

 type = {'single','double','uint16'};

 level = struct('small', 2,'medium', 4, 'large', 6);

 side = struct('small', 9, 'medium', 81,'large', 729);

 end

The type property contains the different data types you want to test. The level
property contains the different fractal level you want to test. The side property contains
the number of rows and columns in the Sierpinski carpet matrix and corresponds to the
level property. To provide meaningful names for each parameterization value, level
and side are defined as structs.

Define Test methods Block

Define the following test methods in the TestCarpet class.

 methods (Test)

 function testRemainPixels(testCase, level)

 % expected number pixels equal to 1

 expPixelCount = 8^level;

 % actual number pixels equal to 1

 actPixels = find(sierpinski(level));

 testCase.verifyNumElements(actPixels,expPixelCount)

 end

 function testClass(testCase, type, level)

 testCase.verifyClass(...

 sierpinski(level,type), type);

 end

 function testDefaultL1Output(testCase)

 exp = single([1 1 1; 1 0 1; 1 1 1]);

 testCase.verifyEqual(sierpinski(1), exp)

 end

 end

The testRemainPixes method tests the output of the sierpinski function by
verifying that the number of nonzero pixels is the same as expected for a particular level.

31 Unit Testing

31-72

This method uses the level property and, therefore, results in three test elements—
one for each value in level. The testClass method tests the class of the output from
the sierpinski function with each combination of the type and level properties.
This approach results in nine test elements. The testDefaultL1Output test method
does not use a TestParameter property and, therefore, is not parameterized. This
test method verifies that the level 1 matrix contains the expected values. Since the test
method is not parameterized, it results in a one test element.

In the test methods above, you did not define the ParameterCombination attribute
of the Test methods block. This attribute is, by default, 'exhaustive'. The test
framework invokes a given test method once for every combination of the test
parameters.

Define Test methods Block with ParameterCombination Attribute

Define the following test methods in the TestCarpet class to ensure that the matrix
output by the sierpinski function has the correct number of elements. Set the
ParameterCombination attribute to 'sequential'.

 methods (Test, ParameterCombination='sequential')

 function testNumel(testCase, level, side)

 import matlab.unittest.constraints.HasElementCount

 testCase.verifyThat(sierpinski(level),...

 HasElementCount(side^2))

 end

 end

end

Test methods with the ParameterCombination attribute set to 'sequential' are
invoked once for each corresponding value of the parameter. The properties, level and
side, must have the same number of values. Since these properties each have three
values, the testNumel method is invoked three times.

TestCarpet Class Definition Summary

The complete contents of TestCarpet.m follows.

classdef TestCarpet < matlab.unittest.TestCase

 properties (TestParameter)

 type = {'single','double','uint16'};

 level = struct('small', 2,'medium', 4, 'large', 6);

 side = struct('small', 9, 'medium', 81,'large', 729);

 Create Basic Parameterized Test

31-73

 end

 methods (Test)

 function testRemainPixels(testCase, level)

 % expected number pixels equal to 1

 expPixelCount = 8^level;

 % actual number pixels equal to 1

 actPixels = find(sierpinski(level));

 testCase.verifyNumElements(actPixels,expPixelCount)

 end

 function testClass(testCase, type, level)

 testCase.verifyClass(...

 sierpinski(level,type), type)

 end

 function testDefaultL1Output(testCase)

 exp = single([1 1 1; 1 0 1; 1 1 1]);

 testCase.verifyEqual(sierpinski(1), exp)

 end

 end

 methods (Test, ParameterCombination='sequential')

 function testNumel(testCase, level, side)

 import matlab.unittest.constraints.HasElementCount

 testCase.verifyThat(sierpinski(level),...

 HasElementCount(side^2))

 end

 end

end

Run All Tests

At the command prompt, create a suite from TestCarpet.m.

suite = matlab.unittest.TestSuite.fromFile('TestCarpet.m');

{suite.Name}'

ans =

 'TestCarpet/testNumel(level=small,side=small)'

 'TestCarpet/testNumel(level=medium,side=medium)'

 'TestCarpet/testNumel(level=large,side=large)'

 'TestCarpet/testRemainPixels(level=small)'

 'TestCarpet/testRemainPixels(level=medium)'

31 Unit Testing

31-74

 'TestCarpet/testRemainPixels(level=large)'

 'TestCarpet/testClass(type=single,level=small)'

 'TestCarpet/testClass(type=single,level=medium)'

 'TestCarpet/testClass(type=single,level=large)'

 'TestCarpet/testClass(type=double,level=small)'

 'TestCarpet/testClass(type=double,level=medium)'

 'TestCarpet/testClass(type=double,level=large)'

 'TestCarpet/testClass(type=uint16,level=small)'

 'TestCarpet/testClass(type=uint16,level=medium)'

 'TestCarpet/testClass(type=uint16,level=large)'

 'TestCarpet/testDefaultL1Output'

The suite had 16 test elements. The element’s Name indicates any parameterization.

suite.run;

Running TestCarpet

..........

......

Done TestCarpet

Run Tests with level Parameter Property Named small

Use the selectIf method of the TestSuite to select test elements that use a particular
parameterization. Select all test elements that use the parameter name small in the
level parameter property list.

s1 = suite.selectIf('ParameterName','small');

{s1.Name}'

ans =

 'TestCarpet/testNumel(level=small,side=small)'

 'TestCarpet/testRemainPixels(level=small)'

 'TestCarpet/testClass(type=single,level=small)'

 'TestCarpet/testClass(type=double,level=small)'

 'TestCarpet/testClass(type=uint16,level=small)'

The suite has five elements.

s1.run;

Running TestCarpet

.....

 Create Basic Parameterized Test

31-75

Done TestCarpet

Alternatively, create the same test suite directly from the fromFile method of
TestSuite.

import matlab.unittest.selectors.HasParameter

s1 = matlab.unittest.TestSuite.fromFile('TestCarpet.m',...

 HasParameter('Name','small'));

See Also
matlab.unittest.TestSuite.selectIf | matlab.unittest.TestCase |
matlab.unittest.selectors.HasParameter

Related Examples
• “Create Advanced Parameterized Test” on page 31-76

31 Unit Testing

31-76

Create Advanced Parameterized Test

This example shows how to create a test that is parameterized in the TestClassSetup,
TestMethodSetup, and Test methods blocks. The example test class tests the random
number generator.

Test Overview

The TestRand test class is parameterized at three different levels.

Parameterization
Level

Method Attribute Property Attribute

Test level Test TestParameter

Method setup level TestMethodSetup MethodSetupParameter

Class setup level TestClassSetup ClassSetupParameter

At each test level, you can use the ParameterCombination method attribute to specify
the test parameterization.

ParameterCombination

Attribute
Method Invocation

'exhaustive'

(default)
Methods are invoked for all combinations of parameters. The
test framework uses this default combination if you do not
specify the ParameterCombination attribute.

'sequential' Methods are invoked with corresponding values from each
parameter. Each parameter must contain the same number of
values.

'pairwise' Methods are invoked for every pair of parameter values at
least once. While the test framework guarantees that tests are
created for every pair of values at least once, you should not
rely on that size, ordering, or specific set of test suite elements.

For example, use the combined methods attribute TestMethodSetup,
ParameterCombination='sequential' to specify sequential combination of the
method setup-level parameters defined in the MethodSetupParameter properties block.

For this example, class setup-level parameterization defines the type of random number
generator. The method setup-level parameterization defines the seed for the random

 Create Advanced Parameterized Test

31-77

number generator, and the test-level parameterization defines the data type and size of
the random number output.

Create TestRand Test Class

In a file in your working folder, create a class that inherits from
matlab.unittest.TestCase. This class tests various aspects of random number
generation.

classdef TestRand < matlab.unittest.TestCase

Define properties Blocks

Define the properties used for parameterized testing. Each properties block
corresponds to parameterization at a particular level.

 properties (ClassSetupParameter)

 generator = {'twister','combRecursive','multFibonacci'};

 end

 properties (MethodSetupParameter)

 seed = {0, 123, 4294967295};

 end

 properties (TestParameter)

 dim1 = struct('small', 1,'medium', 2, 'large', 3);

 dim2 = struct('small', 2,'medium', 3, 'large', 4);

 dim3 = struct('small', 3,'medium', 4, 'large', 5);

 type = {'single','double'};

 end

Define Test Class and Test Method Setup Methods

Define the setup methods at the test class and test method level. These methods register
the initial random number generator state. After the framework runs the tests, the
methods restore the original state. The ClassSetup method defines the type of random
number generator, and the TestMethodSetup seeds the generator.

 methods (TestClassSetup)

 function ClassSetup(testCase, generator)

 orig = rng;

 testCase.addTeardown(@rng, orig)

 rng(0, generator)

 end

 end

31 Unit Testing

31-78

 methods (TestMethodSetup)

 function MethodSetup(testCase, seed)

 orig = rng;

 testCase.addTeardown(@rng, orig)

 rng(seed)

 end

 end

Define Sequential Parameterized Test Methods

Define a methods block with the Test and ParameterCombination='sequential'
attributes. The test framework invokes these methods once for each corresponding
property value.

 methods (Test, ParameterCombination='sequential')

 function testSize(testCase,dim1,dim2,dim3)

 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])

 end

 end

The method tests the size of the output for each corresponding parameter
in dim1, dim2, and dim3. For example, to test all the 'medium' values use:
testCase.verifySize(rand(2,3,4),[2 3 4]);. For a given TestClassSetup and
TestMethodSetup parameterization, the framework calls the testSize method three
times—once each for the 'small', 'medium', and 'large' values.

Define Pairwise Parameterized Test Methods

Define a methods block with the Test and ParameterCombination='pairwise'
attributes. The test framework invokes these methods at least once for every pair of
property values.

 methods (Test, ParameterCombination='pairwise')

 function testRepeatable(testCase,dim1,dim2,dim3)

 state = rng;

 firstRun = rand(dim1,dim2,dim3);

 rng(state)

 secondRun = rand(dim1,dim2,dim3);

 testCase.verifyEqual(firstRun,secondRun)

 end

 end

The test method verifies that the random number generator results are repeatable. For a
given TestClassSetup and TestMethodSetup parameterization, the framework calls

 Create Advanced Parameterized Test

31-79

the testRepeatble method 10 times to ensure testing of each pair of dim1, dim2, and
dim3. However, if the parameter combination attribute is exhaustive, the framework
calls the method 3^3=27 times.

Define Exhaustive Parameterized Test Methods

Define a methods block with the Test attribute or no defined parameter combination.
The parameter combination is exhaustive by default. The test framework invokes these
methods once for every combination of property values.

 methods (Test)

 function testClass(testCase,dim1,dim2,type)

 testCase.verifyClass(rand(dim1,dim2,type), type)

 end

 end

The test method verifies that the class of the output from rand is the same as the
expected class. For a given TestClassSetup and TestMethodSetup parameterization,
the framework calls the testClass method 3*3*2=18 times to ensure testing of each
combination of dim1, dim2, and type.

TestRand Class Definition Summary

classdef TestRand < matlab.unittest.TestCase

 properties (ClassSetupParameter)

 generator = {'twister','combRecursive','multFibonacci'};

 end

 properties (MethodSetupParameter)

 seed = {0, 123, 4294967295};

 end

 properties (TestParameter)

 dim1 = struct('small', 1,'medium', 2, 'large', 3);

 dim2 = struct('small', 2,'medium', 3, 'large', 4);

 dim3 = struct('small', 3,'medium', 4, 'large', 5);

 type = {'single','double'};

 end

 methods (TestClassSetup)

 function ClassSetup(testCase, generator)

 orig = rng;

 testCase.addTeardown(@rng, orig)

 rng(0, generator)

31 Unit Testing

31-80

 end

 end

 methods (TestMethodSetup)

 function MethodSetup(testCase, seed)

 orig = rng;

 testCase.addTeardown(@rng, orig)

 rng(seed)

 end

 end

 methods (Test, ParameterCombination='sequential')

 function testSize(testCase,dim1,dim2,dim3)

 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])

 end

 end

 methods (Test, ParameterCombination='pairwise')

 function testRepeatable(testCase,dim1,dim2,dim3)

 state = rng;

 firstRun = rand(dim1,dim2,dim3);

 rng(state)

 secondRun = rand(dim1,dim2,dim3);

 testCase.verifyEqual(firstRun,secondRun);

 end

 end

 methods (Test)

 function testClass(testCase,dim1,dim2,type)

 testCase.verifyClass(rand(dim1,dim2,type), type)

 end

 end

end

Create Suite from All Tests

At the command prompt, create a suite from TestRand.m class.

suite = matlab.unittest.TestSuite.fromClass(?TestRand)

suite =

 1x279 Test array with properties:

 Name

 Create Advanced Parameterized Test

31-81

 BaseFolder

 Parameterization

 SharedTestFixtures

 Tags

Tests Include:

 17 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

The test suite contains 279 test elements. For a given TestClassSetup and
TestMethodSetup parameterization, the framework creates 3+10+18=31 test
elements. These 31 elements are called three times—once for each TestMethodSetup
parameterization resulting in 3*31=93 test elements for each TestClassSetup
parameterization. There are three TestClassSetup parameterizations resulting in a
total of 3*93=279 test elements.

Examine the names of the first test element.

suite(1).Name

ans =

TestRand[generator=twister]/[seed=value1]testClass(dim1=small,dim2=small,type=single)

The name of each element is constructed from the combination of the following:

• Test class: TestRand
• Class setup property and property name: [generator=twister]
• Method setup property and property name: [seed=value1]
• Test method name: testClass
• Test method properties and property names:

(dim1=small,dim2=small,type=single)

The name for the seed property isn’t particularly meaningful (value1). The testing
framework provided this name because the seed property values are numbers. For a
more meaningful name, define the seed property as a struct with more descriptive field
names.

Run Suite from Class Using Selector

At the command prompt, create a selector to select test elements that test the
'twister' generator for 'single' precision. Omit test elements that use properties
with the 'large' name.

31 Unit Testing

31-82

import matlab.unittest.selectors.HasParameter

s = HasParameter('Property','generator', 'Name','twister') & ...

 HasParameter('Property','type', 'Name','single') & ...

 ~HasParameter('Name','large');

suite2 = matlab.unittest.TestSuite.fromClass(?TestRand,s)

suite2 =

 1x12 Test array with properties:

 Name

 BaseFolder

 Parameterization

 SharedTestFixtures

 Tags

Tests Include:

 9 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

If you first generate the full suite, construct the same test suite as above using the
selectIf method.

suite = matlab.unittest.TestSuite.fromClass(?TestRand);

suite2 = selectIf(suite,s);

Run the test suite.

suite2.run;

Running TestRand

..........

..

Done TestRand

Run Suite from Method Using Selector

At the command prompt, create a selector that omits test elements that use properties
with the 'large' or 'medium' name. Limit results to test elements from the
testRepeatable method.
import matlab.unittest.selectors.HasParameter

s = ~(HasParameter('Name','large') | HasParameter('Name','medium'));

suite3 = matlab.unittest.TestSuite.fromMethod(?TestRand,'testRepeatable',s);

{suite3.Name}'

 Create Advanced Parameterized Test

31-83

ans =

 'TestRand[generator=twister]/[seed=value1]testRepeatable(dim1=small,dim2=small,dim3=small)'

 'TestRand[generator=twister]/[seed=value2]testRepeatable(dim1=small,dim2=small,dim3=small)'

 'TestRand[generator=twister]/[seed=value3]testRepeatable(dim1=small,dim2=small,dim3=small)'

 'TestRand[generator=combRecursive]/[seed=value1]testRepeatable(dim1=small,dim2=small,dim3=small)'

 'TestRand[generator=combRecursive]/[seed=value2]testRepeatable(dim1=small,dim2=small,dim3=small)'

 'TestRand[generator=combRecursive]/[seed=value3]testRepeatable(dim1=small,dim2=small,dim3=small)'

 'TestRand[generator=multFibonacci]/[seed=value1]testRepeatable(dim1=small,dim2=small,dim3=small)'

 'TestRand[generator=multFibonacci]/[seed=value2]testRepeatable(dim1=small,dim2=small,dim3=small)'

 'TestRand[generator=multFibonacci]/[seed=value3]testRepeatable(dim1=small,dim2=small,dim3=small)'

Run the test suite.

suite3.run;

Running TestRand

.........

Done TestRand

Run All Double Precision Tests

At the command prompt, run all the test elements from TestRand.m that use the
parameter name 'double'.

runtests('TestRand','ParameterName','double');

Running TestRand

..........

..........

..........

..........

..........

..........

..........

..........

.

Done TestRand

See Also
matlab.unittest.TestSuite | matlab.unittest.TestCase | matlab.unittest.selectors

Related Examples
• “Create Basic Parameterized Test” on page 31-70

31 Unit Testing

31-84

Create Simple Test Suites

This example shows how to combine tests into test suites, using the SolverTest test
case. Use the static from* methods in the matlab.unittest.TestSuite class to
create suites for combinations of your tests, whether they are organized in packages and
classes or files and folders, or both.

Create Quadratic Solver Function

Create the following function that solves roots of the quadratic equation in a file,
quadraticSolver.m, in your working folder.

function roots = quadraticSolver(a, b, c)

% quadraticSolver returns solutions to the

% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')

 error('quadraticSolver:InputMustBeNumeric', ...

 'Coefficients must be numeric.');

end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);

roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create Test for Quadratic Solver Function

Create the following test class in a file, SolverTest.m, in your working folder.

classdef SolverTest < matlab.unittest.TestCase

 % SolverTest tests solutions to the quadratic equation

 % a*x^2 + b*x + c = 0

 methods (Test)

 function testRealSolution(testCase)

 actSolution = quadraticSolver(1,-3,2);

 expSolution = [2,1];

 testCase.verifyEqual(actSolution,expSolution);

 end

 function testImaginarySolution(testCase)

 actSolution = quadraticSolver(1,2,10);

 expSolution = [-1+3i, -1-3i];

 testCase.verifyEqual(actSolution,expSolution);

 Create Simple Test Suites

31-85

 end

 end

end

Import TestSuite Class

At the command prompt, add the matlab.unittest.TestSuite class to the current
import list.

import matlab.unittest.TestSuite

Make sure the SolverTest class definition file is on your MATLAB path.

Create Suite from SolverTest Class

The fromClass method creates a suite from all Test methods in the SolverTest class.

suiteClass = TestSuite.fromClass(?SolverTest);

result = run(suiteClass);

Create Suite from SolverTest Class Definition File

The fromFile method creates a suite using the name of the file to identify the class.

suiteFile = TestSuite.fromFile('SolverTest.m');

result = run(suiteFile);

Create Suite from All Test Case Files in Current Folder

The fromFolder method creates a suite from all test case files in the specified folder.
For example, the following files are in the current folder:

• BankAccountTest.m
• DocPolynomTest.m
• FigurePropertiesTest.m
• IsSupportedTest.m
• SolverTest.m

suiteFolder = TestSuite.fromFolder(pwd);

result = run(suiteFolder);

Create Suite from Single Test Method

The fromMethod method creates a suite from a single test method.

31 Unit Testing

31-86

suiteMethod = TestSuite.fromMethod(?SolverTest,'testRealSolution')'

result = run(suiteMethod);

See Also
TestSuite

Related Examples
• “Write Simple Test Case Using Classes” on page 31-39

 Run Tests for Various Workflows

31-87

Run Tests for Various Workflows

In this section...

“Set Up Example Tests” on page 31-87
“Run All Tests in Class or Function” on page 31-87
“Run Single Test in Class or Function” on page 31-88
“Run Test Suites by Name” on page 31-88
“Run Test Suites from Test Array” on page 31-89
“Run Tests with Customized Test Runner” on page 31-89

Set Up Example Tests

To explore different ways to run tests, create a class-based test and a function-based test
in your current working folder. For the class-based test file use the DocPolynomTest
example test presented in the matlab.unittest.qualifications.Verifiable example. For the
function-based test file use the axesPropertiesTest example test presented in “Write
Test Using Setup and Teardown Functions” on page 31-23.

Run All Tests in Class or Function

Use the run method of the TestCase class to directly run tests contained in a single test
file. When running tests directly, you do not need to explicitly create a Test array.

% Directly run a single file of class-based tests

results1 = run(DocPolynomTest);

% Directly run a single file of function-based tests

results2 = run(axesPropertiesTest);

You can also assign the test file output to a variable and run the tests using the
functional form or dot notation.

% Create Test or TestCase objects

t1 = DocPolynomTest; % TestCase object from class-based test

t2 = axesPropertiesTest; % Test object from function-based test

% Run tests using functional form

results1 = run(t1);

results2 = run(t2);

31 Unit Testing

31-88

% Run tests using dot notation

results1 = t1.run;

results2 = t2.run;

Alternatively, you can run tests contained in a single file by using runtests.

Run Single Test in Class or Function

Run a single test from within a class-based test file by specifying the test
method as an input argument to the run method. For example, only run the test,
testMultiplication, from the DocPolynomTest file.

results1 = run(DocPolynomTest,'testMultiplication');

Function-based test files return an array of Test objects instead of a single TestCase
object. You can run a particular test by indexing into the array. However, you must
examine the Name field in the test array to ensure you run the correct test. For example,
only run the test, surfaceColorTest, from the axesPropertiesTest file.

t2 = axesPropertiesTest; % Test object from function-based test

t2(:).Name

ans =

axesPropertiesTest/testDefaultXLim

ans =

axesPropertiesTest/surfaceColorTest

The surfaceColorTest test corresponds to the second element in the array.

Only run the surfaceColorTest test.

results2 = t2(2).run; % or results2 = run(t2(2));

Run Test Suites by Name

You can run a group, or suite, of tests together. To run the test suite using runtests,
the suite is defined as a cell array of character vectors representing a test file, a test
class, a package that contains tests or a folder that contains tests.

 Run Tests for Various Workflows

31-89

suite = {'axesPropertiesTest','DocPolynomTest'};

runtests(suite);

Run all tests in the current folder using the pwd as input to the runtests function.

 runtests(pwd);

Alternatively, you can explicitly create Test arrays and use the run method to run them.

Run Test Suites from Test Array

You can explicitly create Test arrays and use the run method in the TestSuite class to
run them. Using this approach, you explicitly define TestSuite objects and, therefore,
can examine the contents. The runtests function does not return the TestSuite object.

import matlab.unittest.TestSuite

s1 = TestSuite.fromClass(?DocPolynomTest);

s2 = TestSuite.fromFile('axesPropertiesTest.m');

% generate test suite and then run

fullSuite = [s1 s2];

result = run(fullSuite);

Since the suite is explicitly defined, it is easy for you to perform further analysis on the
suite, such as rerunning failed tests.

failedTests = fullSuite([result.Failed]);

result2 = run(failedTests);

Run Tests with Customized Test Runner

You can specialize the test running by defining a custom test runner and adding plugins.
The run method of the TestRunner class operates on a TestSuite object.

import matlab.unittest.TestRunner

import matlab.unittest.TestSuite

import matlab.unittest.plugins.TestRunProgressPlugin

% Generate TestSuite.

s1 = TestSuite.fromClass(?DocPolynomTest);

s2 = TestSuite.fromFile('axesPropertiesTest.m');

suite = [s1 s2];

31 Unit Testing

31-90

% Create silent test runner.

runner = TestRunner.withNoPlugins;

% Add plugin to display test progress.

runner.addPlugin(TestRunProgressPlugin.withVerbosity(2))

% Run tests using customized runner.

result = run(runner,[suite]);

See Also
matlab.unittest.TestCase.run | matlab.unittest.TestSuite.run |
matlab.unittest.TestRunner.run | runtests

 Programmatically Access Test Diagnostics

31-91

Programmatically Access Test Diagnostics

If you run tests with the runtests function or the run method of TestSuite or
TestCase, the test framework uses a DiagnosticsRecordingPlugin plugin that
records diagnostics on test results.

After you run tests, you can access recorded diagnostics via the DiagnosticRecord field
in the Details property on TestResult. For example, if your test results are stored in
the variable results, find the recorded diagnostics for the second test in the suite by
invoking records = result(2).Details.DiagnosticRecord.

The recorded diagnostics are DiagnosticRecord objects. To access particular types
of test diagnostics for a particular test, use the selectFailed, selectPassed,
selectIncomplete, and selectLogged methods of the DiagnosticRecord class.

By default, the DiagnosticsRecordingPlugin plugin records qualification failures
and events logged at a Terse level. To configure the plugin to record passing diagnostics
or other logged messages at different verbosity levels, configure an instance of
DiagnosticsRecordingPlugin and add it to the test runner.

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord | matlab.unittest.TestResult

Related Examples
• “Add Plugin to Test Runner” on page 31-92

31 Unit Testing

31-92

Add Plugin to Test Runner

This example shows how to add a plugin to the test runner. The
matlab.unittest.plugins.TestRunProgressPlugin displays progress messages
about a test case. This plugin is part of the matlab.unittest package. MATLAB uses it
for default test runners.

Create a Test for the BankAccount Class

In a file in your working folder, create a test file for the BankAccount class.

classdef BankAccountTest < matlab.unittest.TestCase

 % Tests the BankAccount class.

 methods (TestClassSetup)

 function addBankAccountClassToPath(testCase)

 p = path;

 testCase.addTeardown(@path,p);

 addpath(fullfile(matlabroot,'help','techdoc','matlab_oop',...

 'examples'));

 end

 end

 methods (Test)

 function testConstructor(testCase)

 b = BankAccount(1234, 100);

 testCase.verifyEqual(b.AccountNumber, 1234, ...

 'Constructor failed to correctly set account number');

 testCase.verifyEqual(b.AccountBalance, 100, ...

 'Constructor failed to correctly set account balance');

 end

 function testConstructorNotEnoughInputs(testCase)

 import matlab.unittest.constraints.Throws;

 testCase.verifyThat(@()BankAccount, ...

 Throws('MATLAB:minrhs'));

 end

 function testDesposit(testCase)

 b = BankAccount(1234, 100);

 b.deposit(25);

 testCase.verifyEqual(b.AccountBalance, 125);

 end

 Add Plugin to Test Runner

31-93

 function testWithdraw(testCase)

 b = BankAccount(1234, 100);

 b.withdraw(25);

 testCase.verifyEqual(b.AccountBalance, 75);

 end

 function testNotifyInsufficientFunds(testCase)

 callbackExecuted = false;

 function testCallback(~,~)

 callbackExecuted = true;

 end

 b = BankAccount(1234, 100);

 b.addlistener('InsufficientFunds', @testCallback);

 b.withdraw(50);

 testCase.assertFalse(callbackExecuted, ...

 'The callback should not have executed yet');

 b.withdraw(60);

 testCase.verifyTrue(callbackExecuted, ...

 'The listener callback should have fired');

 end

 end

end

Create Test Suite

At the command prompt, create a test suite, ts, from the BankAccountTest test case.

ts = matlab.unittest.TestSuite.fromClass(?BankAccountTest);

Show Results with No Plugins

Create a test runner with no plugins.

runner = matlab.unittest.TestRunner.withNoPlugins;

res = runner.run(ts);

No output displayed.

Customize Test Runner

Add the custom plugin, TestRunProgressPlugin.

import matlab.unittest.plugins.TestRunProgressPlugin

31 Unit Testing

31-94

runner.addPlugin(TestRunProgressPlugin.withVerbosity(2))

res = runner.run(ts);

Running BankAccountTest

.....

Done BankAccountTest

MATLAB displays progress messages about BankAccountTest.

See Also
matlab.unittest.plugins

 Write Plugins to Extend TestRunner

31-95

Write Plugins to Extend TestRunner

In this section...

“Custom Plugins Overview” on page 31-95
“Extending Test Level Plugin Methods” on page 31-96
“Extending Test Class Level Plugin Methods” on page 31-96
“Extending Test Suite Level Plugin Methods” on page 31-97

Custom Plugins Overview

TestRunnerPlugin methods have three levels: Test Suite, Test Class, and Test. At each
level, you implement methods to extend the creation, setup, run, and teardown of tests or
test fixtures. The TestRunner runs these methods as shown in the figure.

Additionally, the reportFinalizedResult method enables the test runner to report
finalized test results. A test result is finalized when no remaining test content can modify
the results. The test runner determines if it invokes the reportFinalizedResult
method at each level.

The creation methods are the only set of TestRunnerPlugin methods with an output
argument. Typically, you extend the creation methods to listen for various events

31 Unit Testing

31-96

originating from the test content at the corresponding level. Since both TestCase and
Fixture instances inherit from the handle class, you add these listeners using the
addlistener method. The methods that set up, run and tear down test content extend
the way the TestRunner evaluates the test content.

Extending Test Level Plugin Methods

The TestRunnerPlugin methods at the test level extend the creation, setup, run, and
teardown of a single test suite element. A single test element consists of one test method
or, if the test is parameterized, one instance of the test’s parameterization.

Type of Method Test Level Falls Within Scope of runTest

creation method createTestMethodInstance
setup method setupTestMethod
run method runTestMethod
teardown method teardownTestMethod

At this level, the createTestMethodInstance method is the only plugin method with
an output argument. It returns the TestCase instances created for each Test element.
The test framework passes each of these instances into corresponding Test methods, and
into any methods with the TestMethodSetup or TestMethodTeardown attribute.

The test framework evaluates methods at the test level within the scope of the runTest
method. Provided the test framework completes all TestMethodSetup work, it invokes
the plugin methods in this level a single time per test element.

Extending Test Class Level Plugin Methods

The TestRunnerPlugin methods at the test class level extend the creation, setup,
run, and teardown of test suite elements that belong to the same test class or the same
function-based test. These methods apply to a subset of the full TestSuite that the
TestRunner runs.

Type of Method Test Class Level Falls Within Scope of runTestClass

creation method createTestClassInstance
setup method setupTestClass

 Write Plugins to Extend TestRunner

31-97

Type of Method Test Class Level Falls Within Scope of runTestClass

run method runTest
teardown method teardownTestClass

At this level, the createTestClassInstance method is the only plugin method with
an output argument. It returns the TestCase instances created at the class level.
For each class, the test framework passes the instance into any methods with the
TestClassSetup or TestClassTeardown attribute.

A test class setup is parameterized if it contains properties with the
ClassSetupParameter attribute. In this case, the test framework evaluates the
setupTestClass and teardownTestClass methods as many times as the class setup
parameterization dictates.

The run method at this level, runTest, extends the running of a single TestSuite
element, and incorporates the functionality described for the test level plugin methods.

The test framework evaluates methods at the test class level within the scope of the
runTestClass method. If TestClassSetup completes successfully, it invokes the
runTest method one time for each element in the Test array. Each TestClassSetup
parameterization invokes the creation, setup, and teardown methods a single time.

Extending Test Suite Level Plugin Methods

The TestRunnerPlugin methods at the test suite level extend the creation, setup,
run, and teardown of shared test fixtures. These methods fall within the scope of
runTestSuite.

Type of Method Test Level Falls Within Scope of runTestSuite

creation method createSharedTestFixture
setup method setupSharedTestFixture
run method runTestClass
teardown method teardownSharedTestFixture

At this level, the createSharedTestFixture method is the only plugin method
with an output argument. It returns the Fixture instances for each shared fixture
required by a test class. These fixture instances are available to the test through the
getSharedTestFixtures method of TestCase.

31 Unit Testing

31-98

The run method at this level, runTestClass, extends the running of tests that belong
to the same test class or the same function-based test, and incorporates the functionality
described for the test class level plugin methods.

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.plugins.OutputStream
| matlab.unittest.TestCase | matlab.unittest.TestRunner |
matlab.unittest.fixtures.Fixture | addlistener

Related Examples
• “Create Custom Plugin” on page 31-99
• “Plugin to Generate Custom Test Output Format” on page 31-110
• “Write Plugin to Save Diagnostic Details” on page 31-105

 Create Custom Plugin

31-99

Create Custom Plugin

This example shows how to create a custom plugin that counts the number of passing
and failing assertions when running a specified test suite. The plugin prints a brief
summary at the end of the testing.

Create AssertionCountingPlugin Class

In a file in your working folder, create a new class, AssertionCountingPlugin,
that inherits from the matlab.unittest.plugins.TestRunnerPlugin class.
For a complete version of the code for an AssertionCountingPlugin, see
"AssertionCountingPlugin Class Definition Summary".

Keep track of the number of passing and failing assertions. Within a properties block,
create NumPassingAssertions and NumFailingAssertions properties to pass the
data between methods.

properties

 NumPassingAssertions = 0;

 NumFailingAssertions = 0;

end

Extend Running of TestSuite

Implement the runTestSuite method in a methods block with protected access.

methods (Access = protected)

 function runTestSuite(plugin, pluginData)

 suiteSize = numel(pluginData.TestSuite);

 fprintf('## Running a total of %d tests\n', suiteSize)

 plugin.NumPassingAssertions = 0;

 plugin.NumFailingAssertions = 0;

 runTestSuite@matlab.unittest.plugins.TestRunnerPlugin(...

 plugin, pluginData);

 fprintf('## Done running tests\n')

 plugin.printAssertionSummary()

 end

end

The test framework evaluates this method one time. It displays information about the
total number of tests, initializes the assertion count, and invokes the superclass method.

31 Unit Testing

31-100

After the framework completes evaluating the superclass method, the runTestSuite
method displays the assertion count summary.

Extend Creation of Shared Test Fixtures and TestCase Instances

Add listeners to AssertionPassed and AssertionFailed events to count the
assertions. To add these listeners, extend the methods that the test framework
uses to create the test content. The test content comprises TestCase instances for
each Test element, class-level TestCase instances for the TestClassSetup and
TestClassTeardown methods, and Fixture instances that are used when a TestCase
class has the SharedTestFixtures attribute.

Invoke the corresponding superclass method when you override the creation methods.
The creation methods return the content that the test framework creates for each of their
respective contexts. When implementing one of these methods, pass this argument out of
your own implementation, and add the listeners required by this plugin.

Add these creation methods to a methods block with protected access.

methods (Access = protected)

 function fixture = createSharedTestFixture(plugin, pluginData)

 fixture = createSharedTestFixture@...

 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 fixture.addlistener('AssertionPassed', ...

 @(~,~)plugin.incrementPassingAssertionsCount)

 fixture.addlistener('AssertionFailed', ...

 @(~,~)plugin.incrementFailingAssertionsCount)

 end

 function testCase = createTestClassInstance(plugin, pluginData)

 testCase = createTestClassInstance@...

 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...

 @(~,~)plugin.incrementPassingAssertionsCount)

 testCase.addlistener('AssertionFailed', ...

 @(~,~)plugin.incrementFailingAssertionsCount)

 end

 function testCase = createTestMethodInstance(plugin, pluginData)

 testCase = createTestMethodInstance@...

 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 Create Custom Plugin

31-101

 testCase.addlistener('AssertionPassed', ...

 @(~,~)plugin.incrementPassingAssertionsCount)

 testCase.addlistener('AssertionFailed', ...

 @(~,~)plugin.incrementFailingAssertionsCount)

 end

end

Extend Running of Single Test Suite Element

Extend runTest to display the name of each test at run time. Include this function in a
methods block with protected access. Like all plugin methods, when you override this
method you must invoke the corresponding superclass method.

methods (Access = protected)

 function runTest(plugin, pluginData)

 fprintf('### Running test: %s\n', pluginData.Name)

 runTest@matlab.unittest.plugins.TestRunnerPlugin(...

 plugin, pluginData);

 end

end

Define Helper Functions

In a methods block with private access, define three helper functions. These functions
increment the number of passing or failing assertions, and print out the assertion count
summary.

methods (Access = private)

 function incrementPassingAssertionsCount(plugin)

 plugin.NumPassingAssertions = plugin.NumPassingAssertions + 1;

 end

 function incrementFailingAssertionsCount(plugin)

 plugin.NumFailingAssertions = plugin.NumFailingAssertions + 1;

 end

 function printAssertionSummary(plugin)

 fprintf('%s\n', repmat('_', 1, 30))

 fprintf('Total Assertions: %d\n', ...

 plugin.NumPassingAssertions + plugin.NumFailingAssertions)

 fprintf('\t%d Passed, %d Failed\n', ...

 plugin.NumPassingAssertions, plugin.NumFailingAssertions)

 end

31 Unit Testing

31-102

end

AssertionCountingPlugin Class Definition Summary

classdef AssertionCountingPlugin < ...

 matlab.unittest.plugins.TestRunnerPlugin

 properties

 NumPassingAssertions = 0;

 NumFailingAssertions = 0;

 end

 methods (Access = protected)

 function runTestSuite(plugin, pluginData)

 suiteSize = numel(pluginData.TestSuite);

 fprintf('## Running a total of %d tests\n', suiteSize)

 plugin.NumPassingAssertions = 0;

 plugin.NumFailingAssertions = 0;

 runTestSuite@matlab.unittest.plugins.TestRunnerPlugin(...

 plugin, pluginData);

 fprintf('## Done running tests\n')

 plugin.printAssertionSummary()

 end

 function fixture = createSharedTestFixture(plugin, pluginData)

 fixture = createSharedTestFixture@...

 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 fixture.addlistener('AssertionPassed', ...

 @(~,~)plugin.incrementPassingAssertionsCount)

 fixture.addlistener('AssertionFailed', ...

 @(~,~)plugin.incrementFailingAssertionsCount)

 end

 function testCase = createTestClassInstance(plugin, pluginData)

 testCase = createTestClassInstance@...

 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...

 @(~,~)plugin.incrementPassingAssertionsCount)

 testCase.addlistener('AssertionFailed', ...

 @(~,~)plugin.incrementFailingAssertionsCount)

 end

 function testCase = createTestMethodInstance(plugin, pluginData)

 testCase = createTestMethodInstance@...

 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...

 @(~,~)plugin.incrementPassingAssertionsCount)

 testCase.addlistener('AssertionFailed', ...

 @(~,~)plugin.incrementFailingAssertionsCount)

 Create Custom Plugin

31-103

 end

 function runTest(plugin, pluginData)

 fprintf('### Running test: %s\n', pluginData.Name)

 runTest@matlab.unittest.plugins.TestRunnerPlugin(...

 plugin, pluginData);

 end

 end

 methods (Access = private)

 function incrementPassingAssertionsCount(plugin)

 plugin.NumPassingAssertions = plugin.NumPassingAssertions + 1;

 end

 function incrementFailingAssertionsCount(plugin)

 plugin.NumFailingAssertions = plugin.NumFailingAssertions + 1;

 end

 function printAssertionSummary(plugin)

 fprintf('%s\n', repmat('_', 1, 30))

 fprintf('Total Assertions: %d\n', ...

 plugin.NumPassingAssertions + plugin.NumFailingAssertions)

 fprintf('\t%d Passed, %d Failed\n', ...

 plugin.NumPassingAssertions, plugin.NumFailingAssertions)

 end

 end

end

Create Example Test Class

In your working folder, create the file ExampleTest.m containing the following test
class.

classdef ExampleTest < matlab.unittest.TestCase

 methods(Test)

 function testOne(testCase) % Test fails

 testCase.assertEqual(5, 4)

 end

 function testTwo(testCase) % Test passes

 testCase.verifyEqual(5, 5)

 end

 function testThree(testCase) % Test passes

 testCase.assertEqual(7*2, 14)

 end

 end

end

Add Plugin to TestRunner and Run Tests

At the command prompt, create a test suite from the ExampleTest class.

31 Unit Testing

31-104

import matlab.unittest.TestSuite

import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);

Create a test runner with no plugins. This code creates a silent runner and provides you
with complete control over the installed plugins.

runner = TestRunner.withNoPlugins;

Run the tests.

result = runner.run(suite);

Add AssertionCountingPlugin to the runner and run the tests.

runner.addPlugin(AssertionCountingPlugin)

result = runner.run(suite);

Running a total of 3 tests

Running test: ExampleTest/testOne

Running test: ExampleTest/testTwo

Running test: ExampleTest/testThree

Done running tests

Total Assertions: 2

 1 Passed, 1 Failed

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.plugins.OutputStream
| matlab.unittest.TestCase | matlab.unittest.TestRunner |
matlab.unittest.fixtures.Fixture | addlistener

Related Examples
• “Write Plugins to Extend TestRunner” on page 31-95
• “Write Plugin to Save Diagnostic Details” on page 31-105

 Write Plugin to Save Diagnostic Details

31-105

Write Plugin to Save Diagnostic Details

This example shows how to create a custom plugin to save diagnostic details. The plugin
listens for test failures and saves diagnostic information so you can access it after the
framework completes the tests.

Create Plugin

In a file in your working folder, create a class, myPlugin, that inherits from the
matlab.unittest.plugins.TestRunnerPlugin class. In the plugin class:

• Define a FailedTestData property on the plugin that stores information from failed
tests.

• Override the default createTestMethodInstance method of TestRunnerPlugin
to listen for assertion, fatal assertion, and verification failures, and to record relevant
information.

• Override the default runTestSuite method of TestRunnerPlugin to initialize the
FailedTestData property value. If you do not initialize value of the property, each
time you run the tests using the same test runner, failed test information is appended
to the FailedTestData property.

• Define a helper function, recordData, to save information about the test failure as a
table.

The plugin saves information contained in the PluginData and
QualificationEventData objects. It also saves the type of failure and timestamp.

classdef DiagnosticRecorderPlugin < matlab.unittest.plugins.TestRunnerPlugin

 properties

 FailedTestData

 end

 methods (Access = protected)

 function runTestSuite(plugin, pluginData)

 plugin.FailedTestData = [];

 runTestSuite@...

 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 end

 function testCase = createTestMethodInstance(plugin, pluginData)

 testCase = createTestMethodInstance@...

31 Unit Testing

31-106

 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testName = pluginData.Name;

 testCase.addlistener('AssertionFailed', ...

 @(~,event)plugin.recordData(event,testName, 'Assertion'));

 testCase.addlistener('FatalAssertionFailed', ...

 @(~,event)plugin.recordData(event,testName, 'Fatal Assertion'));

 testCase.addlistener('VerificationFailed', ...

 @(~,event)plugin.recordData(event,testName, 'Verification'));

 end

 end

 methods (Access = private)

 function recordData(plugin,eventData,name,failureType)

 s.Name = {name};

 s.Type = {failureType};

 s.TestDiagnostics = eventData.TestDiagnosticResult;

 s.FrameworkDiagnostics = eventData.FrameworkDiagnosticResult;

 s.Stack = eventData.Stack;

 s.Timestamp = datetime;

 plugin.FailedTestData = [plugin.FailedTestData; struct2table(s)];

 end

 end

end

Create Test Class

In your working folder, create the file ExampleTest.m containing the following test
class.

classdef ExampleTest < matlab.unittest.TestCase

 methods(Test)

 function testOne(testCase)

 testCase.assertGreaterThan(5,10)

 end

 function testTwo(testCase)

 wrongAnswer = 'wrong';

 testCase.verifyEmpty(wrongAnswer,'Not Empty')

 testCase.verifyClass(wrongAnswer,'double','Not double')

 end

 function testThree(testCase)

 testCase.assertEqual(7*2,13,'Values not equal')

 end

 Write Plugin to Save Diagnostic Details

31-107

 function testFour(testCase)

 testCase.fatalAssertEqual(3+2,6);

 end

 end

end

The fatal assertion failure in testFour causes the framework to halt and throw an
error. In this example, there are no subsequent tests. If there was a subsequent test, the
framework would not run it.

Add Plugin to Test Runner and Run Tests

At the command prompt, create a test suite from the ExampleTest class, and create a
test runner.

import matlab.unittest.TestSuite

import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);

runner = TestRunner.withNoPlugins;

Create an instance of myPlugin and add it to the test runner. Run the tests.

p = DiagnosticRecorderPlugin;

runner.addPlugin(p)

result = runner.run(suite);

Error using ExampleTest/testFour (line 16)

Fatal assertion failed.

With the failed fatal assertion, the framework throws an error, and the test runner does
not return a TestResult object. However, the DiagnosticRecorderPlugin stores
information about the tests preceding and including the test with the failed assertion.

Inspect Diagnostic Information

At the command prompt, view information about the failed tests. The information is
saved in the FailedTestData property of the plugin.

T = p.FailedTestData

T =

 Name Type TestDiagnostics FrameworkDiagnostics Stack Timestamp

31 Unit Testing

31-108

 _______________________ _________________ __________________ ____________________ ____________ ____________________

 'ExampleTest/testOne' 'Assertion' '' [1x243 char] [1x1 struct] 24-Nov-2014 14:33:01

 'ExampleTest/testTwo' 'Verification' 'Not Empty' [1x201 char] [1x1 struct] 24-Nov-2014 14:33:01

 'ExampleTest/testTwo' 'Verification' 'Not double' [1x243 char] [1x1 struct] 24-Nov-2014 14:33:01

 'ExampleTest/testThree' 'Assertion' 'Values not equal' [1x625 char] [1x1 struct] 24-Nov-2014 14:33:02

 'ExampleTest/testFour' 'Fatal Assertion' '' [1x635 char] [1x1 struct] 24-Nov-2014 14:33:02

There are many options to archive or post-process this information. For example, you
can save the variable as a MAT-file or use writetable to write the table to various file
types, such as .txt, .csv, or .xls.

View the stack information for the third test failure

T.Stack(3)

ans =

 file: 'C:\Work\ExampleTest.m'

 name: 'ExampleTest.testTwo'

 line: 9

Display the diagnostics that the framework displayed for the fifth test failure.

celldisp(T.FrameworkDiagnostics(5))

ans{1} =

fatalAssertEqual failed.

--> The values are not equal using "isequaln".

--> Failure table:

 Actual Expected Error RelativeError

 ______ ________ _____ __________________

 5 6 -1 -0.166666666666667

Actual double:

 5

Expected double:

 6

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.TestCase |
matlab.unittest.TestRunner | addlistener

 Write Plugin to Save Diagnostic Details

31-109

Related Examples
• “Write Plugins to Extend TestRunner” on page 31-95
• “Create Custom Plugin” on page 31-99
• “Plugin to Generate Custom Test Output Format” on page 31-110

31 Unit Testing

31-110

Plugin to Generate Custom Test Output Format

This example shows how to create a plugin that uses a custom format to write finalized
test results to an output stream.

Create Plugin

In a file in your working folder, create a class, ExampleCustomPlugin, that inherits
from the matlab.unittest.plugins.TestRunnerPlugin class. In the plugin class:

• Define a Stream property on the plugin that stores the OutputStream instance. By
default, the plugin writes to standard output.

• Override the default runTestSuite method of TestRunnerPlugin to output text
that indicates the test runner is running a new test session. This information is
especially useful if you are writing to a single log file, as it allows you to differentiate
the test runs.

• Override the default reportFinalizedResult method of TestRunnerPlugin to
write finalized test results to the output stream. You can modify the print method
to output the test results in a format that works for your test logs or continuous
integration system.

classdef ExampleCustomPlugin < matlab.unittest.plugins.TestRunnerPlugin

 properties (Access=private)

 Stream

 end

 methods

 function p = ExampleCustomPlugin(stream)

 if ~nargin

 stream = matlab.unittest.plugins.ToStandardOutput;

 end

 validateattributes(stream,...

 {'matlab.unittest.plugins.OutputStream'},{})

 p.Stream = stream;

 end

 end

 methods (Access=protected)

 function runTestSuite(plugin,pluginData)

 plugin.Stream.print('\n--- NEW TEST SESSION at %s ---\n',...

 char(datetime))

 runTestSuite@...

 Plugin to Generate Custom Test Output Format

31-111

 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);

 end

 function reportFinalizedResult(plugin,pluginData)

 thisResult = pluginData.TestResult;

 if thisResult.Passed

 status = 'PASSED';

 elseif thisResult.Failed

 status = 'FAILED';

 elseif thisResult.Incomplete

 status = 'SKIPPED';

 end

 plugin.Stream.print(...

 '### YPS Company - Test %s ### - %s in %f seconds.\n',...

 status,thisResult.Name,thisResult.Duration)

 reportFinalizedResult@...

 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData)

 end

 end

end

Create Test Class

In your working folder, create the file ExampleTest.m containing the following test
class. In this test class, two of the tests pass and the others result in a verification or
assumption failure.

classdef ExampleTest < matlab.unittest.TestCase

 methods(Test)

 function testOne(testCase)

 testCase.assertGreaterThan(5,1)

 end

 function testTwo(testCase)

 wrongAnswer = 'wrong';

 testCase.verifyEmpty(wrongAnswer,'Not Empty')

 testCase.verifyClass(wrongAnswer,'double','Not double')

 end

 function testThree(testCase)

 testCase.assumeEqual(7*2,13,'Values not equal')

 end

 function testFour(testCase)

 testCase.verifyEqual(3+2,5);

 end

 end

31 Unit Testing

31-112

end

Add Plugin to Test Runner and Run Tests

At the command prompt, create a test suite from the ExampleTest class, and create a
test runner.

import matlab.unittest.TestSuite

import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);

runner = TestRunner.withNoPlugins;

Create an instance of ExampleCustomPlugin and add it to the test runner. Run the
tests.

import matlab.unittest.plugins.ToFile

fname = 'YPS_test_results.txt';

p = ExampleCustomPlugin(ToFile(fname));

runner.addPlugin(p)

result = runner.run(suite);

View the contents of the output file.

type(fname)

--- NEW TEST SESSION at 26-Jan-2015 10:41:24 ---

YPS Company - Test PASSED ### - ExampleTest/testOne in 0.123284 seconds.

YPS Company - Test FAILED ### - ExampleTest/testTwo in 0.090363 seconds.

YPS Company - Test SKIPPED ### - ExampleTest/testThree in 0.518044 seconds.

YPS Company - Test PASSED ### - ExampleTest/testFour in 0.020599 seconds.

Rerun the Incomplete tests using the same test runner. View the contents of the output
file.

suiteFiltered = suite([result.Incomplete]);

result2 = runner.run(suiteFiltered);

type(fname)

--- NEW TEST SESSION at 26-Jan-2015 10:41:24 ---

YPS Company - Test PASSED ### - ExampleTest/testOne in 0.123284 seconds.

 Plugin to Generate Custom Test Output Format

31-113

YPS Company - Test FAILED ### - ExampleTest/testTwo in 0.090363 seconds.

YPS Company - Test SKIPPED ### - ExampleTest/testThree in 0.518044 seconds.

YPS Company - Test PASSED ### - ExampleTest/testFour in 0.020599 seconds.

--- NEW TEST SESSION at 26-Jan-2015 10:41:58 ---

YPS Company - Test SKIPPED ### - ExampleTest/testThree in 0.007892 seconds.

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.plugins.OutputStream |
ToFile | ToStandardOutput

Related Examples
• “Write Plugins to Extend TestRunner” on page 31-95
• “Write Plugin to Save Diagnostic Details” on page 31-105

31 Unit Testing

31-114

Analyze Test Case Results

This example shows how to analyze the information returned by a test runner created
from the SolverTest test case.

Create Quadratic Solver Function

Create the following function that solves roots of the quadratic equation in a file,
quadraticSolver.m, in your working folder.

function roots = quadraticSolver(a, b, c)

% quadraticSolver returns solutions to the

% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')

 error('quadraticSolver:InputMustBeNumeric', ...

 'Coefficients must be numeric.');

end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);

roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create Test for Quadratic Solver Function

Create the following test class in a file, SolverTest.m, in your working folder.

classdef SolverTest < matlab.unittest.TestCase

 % SolverTest tests solutions to the quadratic equation

 % a*x^2 + b*x + c = 0

 methods (Test)

 function testRealSolution(testCase)

 actSolution = quadraticSolver(1,-3,2);

 expSolution = [2,1];

 testCase.verifyEqual(actSolution,expSolution);

 end

 function testImaginarySolution(testCase)

 actSolution = quadraticSolver(1,2,10);

 expSolution = [-1+3i, -1-3i];

 testCase.verifyEqual(actSolution,expSolution);

 end

 end

 Analyze Test Case Results

31-115

end

Run SolverTest Test Case

Create a test suite, quadTests.

quadTests = matlab.unittest.TestSuite.fromClass(?SolverTest);

result = run(quadTests);

Running SolverTest

..

Done SolverTest

All tests passed.

Explore Output Argument, result

The output argument, result, is a matlab.unittest.TestResult object. It contains
information of the two tests in SolverTest.

whos result

 Name Size Bytes Class

 result 1x2 248 matlab.unittest.TestResult

Display Information for One Test

To see the information for one value, type:

result(1)

ans =

 TestResult with properties:

 Name: 'SolverTest/testRealSolution'

 Passed: 1

 Failed: 0

 Incomplete: 0

 Duration: 0.0181

 Details: [1x1 struct]

Totals:

31 Unit Testing

31-116

 1 Passed, 0 Failed, 0 Incomplete.

 0.018149 seconds testing time.

Create Table of Test Results

To access functionality available to tables, create one from the TestResult object.

rt = table(result)

rt =

 Name Passed Failed Incomplete Duration Details

 __________________________________ ______ ______ __________ ________ ____________

 'SolverTest/testRealSolution' true false false 0.018149 [1x1 struct]

 'SolverTest/testImaginarySolution' true false false 0.013967 [1x1 struct]

Sort the test results by duration.

sortrows(rt,'Duration')

ans =

 Name Passed Failed Incomplete Duration Details

 __________________________________ ______ ______ __________ ________ ____________

 'SolverTest/testImaginarySolution' true false false 0.013967 [1x1 struct]

 'SolverTest/testRealSolution' true false false 0.018149 [1x1 struct]

Export test results to a CSV file.

writetable(rt,'myTestResults.csv','QuoteStrings',true)

Related Examples
• “Write Simple Test Case Using Classes” on page 31-39

 Analyze Failed Test Results

31-117

Analyze Failed Test Results

This example shows how to identify and rerun failed tests.

Create an Incorrect Test Method

Using the SolverTest test case, add a method, testBadRealSolution. This test,
based on testRealSolution, calls the quadraticSolver function with inputs 1,3,2,
but tests the results against an incorrect solution, [2,1].

function testBadRealSolution(testCase)

 actSolution = quadraticSolver(1,3,2);

 expSolution = [2,1];

 testCase.verifyEqual(actSolution,expSolution)

end

Run New Test Suite

Save the updated SolverTest class definition and rerun the tests.

quadTests = matlab.unittest.TestSuite.fromClass(?SolverTest);

result1 = run(quadTests);

Running SolverTest

..

==

Verification failed in SolverTest/testBadRealSolution.

 Framework Diagnostic:

 verifyEqual failed.

 --> The values are not equal using "isequaln".

 --> Failure table:

 Index Actual Expected Error RelativeError

 _____ ______ ________ _____ _____________

 1 -1 2 -3 -1.5

 2 -2 1 -3 -3

 Actual Value:

 -1 -2

 Expected Value:

 2 1

31 Unit Testing

31-118

 Stack Information:

 In C:\work\SolverTest.m (SolverTest.testBadRealSolution) at 19

==

.

Done SolverTest

Failure Summary:

 Name Failed Incomplete Reason(s)

 ===

 SolverTest/testBadRealSolution X Failed by verification.

Analyze Results

The output tells you SolverTest/testBadRealSolution failed. From the Framework
Diagnostic you see the following:

 Actual Value:

 -1 -2

 Expected Value:

 2 1

At this point, you must decide if the error is in quadraticSolver or in your value for
expSolution.

Correct Error

Edit the value of expSolution in testBadRealSolution:

expSolution = [-1 -2];

Rerun Tests

Save SolverTest and rerun only the failed tests.

failedTests = quadTests([result1.Failed]);

result2 = run(failedTests)

Running SolverTest

.

Done SolverTest

 Analyze Failed Test Results

31-119

result2 =

 TestResult with properties:

 Name: 'SolverTest/testBadRealSolution'

 Passed: 1

 Failed: 0

 Incomplete: 0

 Duration: 0.0108

 Details: [1x1 struct]

Totals:

 1 Passed, 0 Failed, 0 Incomplete.

 0.010813 seconds testing time.

31 Unit Testing

31-120

Dynamically Filtered Tests

In this section...

“Test Methods” on page 31-120
“Method Setup and Teardown Code” on page 31-123
“Class Setup and Teardown Code” on page 31-125

Assumption failures produce filtered tests. In the matlab.unittest.TestResult class,
such a test is marked Incomplete.

Since filtering test content through the use of assumptions does not produce test failures,
it has the possibility of creating dead test code. Avoiding this requires monitoring of
filtered tests.

Test Methods

If an assumption failure is encountered inside of a TestCase method with the Test
attribute, the entire method is marked as filtered, but MATLAB runs the subsequent
Test methods.

The following class contains an assumption failure in one of the methods in the Test
block.

classdef ExampleTest < matlab.unittest.TestCase

 methods(Test)

 function testA(testCase)

 testCase.verifyTrue(true)

 end

 function testB(testCase)

 testCase.assumeEqual(0,1)

 % remaining test code is not exercised

 end

 function testC(testCase)

 testCase.verifyFalse(true)

 end

 end

end

Since the testB method contains an assumption failure, when you run the test, the
testing framework filters that test and marks it as incomplete. After the assumption

 Dynamically Filtered Tests

31-121

failure in testB, the testing framework proceeds and executes testC, which contains a
verification failure.

ts = matlab.unittest.TestSuite.fromClass(?ExampleTest);

res = ts.run;

Running ExampleTest

.

==

ExampleTest/testB was filtered.

 Details

==

.

==

Verification failed in ExampleTest/testC.

 Framework Diagnostic:

 verifyFalse failed.

 --> The value must evaluate to "false".

 Actual Value:

 1

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testC) at 11

==

.

Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)

 ==

 ExampleTest/testB X Filtered by assumption.

 --

 ExampleTest/testC X Failed by verification.

If you examine the TestResult, you notice that there is a passed test, a failed test, and
a test that did not complete due to an assumption failure.

31 Unit Testing

31-122

res

res =

 1x3 TestResult array with properties:

 Name

 Passed

 Failed

 Incomplete

 Duration

 Details

Totals:

 1 Passed, 1 Failed, 1 Incomplete.

 1.3678 seconds testing time.

The testing framework keeps track of incomplete tests so that you can monitor filtered
tests for nonexercised test code. You can see information about these tests within the
TestResult object.

res([res.Incomplete])

ans =

 TestResult with properties:

 Name: 'ExampleTest/testB'

 Passed: 0

 Failed: 0

 Incomplete: 1

 Duration: 1.2594

 Details: [1x1 struct]

Totals:

 0 Passed, 0 Failed, 1 Incomplete.

 1.2594 seconds testing time.

To create a modified test suite from only the filtered tests, select incomplete tests from
the original test suite.

tsFiltered = ts([res.Incomplete])

tsFiltered =

 Dynamically Filtered Tests

31-123

 Test with properties:

 Name: 'ExampleTest/testB'

 BaseFolder: 'C:\work'

 Parameterization: [0x0 matlab.unittest.parameters.EmptyParameter]

 SharedTestFixtures: [0x0 matlab.unittest.fixtures.EmptyFixture]

 Tags: {1x0 cell}

Tests Include:

 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Method Setup and Teardown Code

If an assumption failure is encountered inside a TestCase method with the
TestMethodSetup attribute, MATLAB filters the method which was to be run for that
instance. If a test uses assumptions from within the TestMethodSetup block, consider
instead using the assumptions in the TestClassSetup block, which likewise filters all
Test methods in the class but is less verbose and more efficient.

One of the methods in the following TestMethodSetup block within ExampleTest.m
contains an assumption failure.

 methods(TestMethodSetup)

 function setupMethod1(testCase)

 testCase.assumeEqual(1,0)

 % remaining test code is not exercised

 end

 function setupMethod2(testCase)

 disp('* Running setupMethod2 *')

 testCase.assertEqual(1,1)

 end

 end

Updated ExampleTest Class Definition

classdef ExampleTest < matlab.unittest.TestCase

 methods(TestMethodSetup)

 function setupMethod1(testCase)

 testCase.assumeEqual(1,0)

 % remaining test code is not exercised

 end

 function setupMethod2(testCase)

 disp('* Running setupMethod2 *')

31 Unit Testing

31-124

 testCase.assertEqual(1,1)

 end

 end

 methods(Test)

 function testA(testCase)

 testCase.verifyTrue(true)

 end

 function testB(testCase)

 testCase.assumeEqual(0,1)

 % remaining test code is not exercised

 end

 function testC(testCase)

 testCase.verifyFalse(true)

 end

 end

end

When you run the test, you see that the framework completes executes all the methods in
the TestMethodSetup block that do not contain the assumption failure, and it marks as
incomplete all methods in the Test block.

ts = matlab.unittest.TestSuite.fromClass(?ExampleTest);

res = ts.run;

Running ExampleTest

==

ExampleTest/testA was filtered.

 Details

==

* Running setupMethod2 *

.

==

ExampleTest/testB was filtered.

 Details

==

* Running setupMethod2 *

.

==

ExampleTest/testC was filtered.

 Details

==

* Running setupMethod2 *

.

 Dynamically Filtered Tests

31-125

Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)

 ==

 ExampleTest/testA X Filtered by assumption.

 --

 ExampleTest/testB X Filtered by assumption.

 --

 ExampleTest/testC X Filtered by assumption.

The Test methods did not change but all 3 are filtered due to an assumption failure
in the TestMethodSetup block. The testing framework executes methods in the
TestMethodSetup block without assumption failures, such as setupMethod2. As
expected, the testing framework executes setupMethod2 3 times, once before each Test
method.

Class Setup and Teardown Code

If an assumption failure is encountered inside of a TestCase method with the
TestClassSetup or TestClassTeardown attribute, MATLAB filters the entire
TestCase class.

The methods in the following TestClassSetup block within ExampleTest.m contains
an assumption failure.

 methods(TestClassSetup)

 function setupClass(testCase)

 testCase.assumeEqual(1,0)

 % remaining test code is not exercised

 end

 end

Updated ExampleTest Class Definition

classdef ExampleTest < matlab.unittest.TestCase

 methods(TestClassSetup)

 function setupClass(testCase)

 testCase.assumeEqual(1,0)

 % remaining test code is not exercised

 end

31 Unit Testing

31-126

 end

 methods(TestMethodSetup)

 function setupMethod1(testCase)

 testCase.assumeEqual(1,0)

 % remaining test code is not exercised

 end

 function setupMethod2(testCase)

 disp('* Running setupMethod2 *')

 testCase.assertEqual(1,1)

 end

 end

 methods(Test)

 function testA(testCase)

 testCase.verifyTrue(true)

 end

 function testB(testCase)

 testCase.assumeEqual(0,1)

 % remaining test code is not exercised

 end

 function testC(testCase)

 testCase.verifyFalse(true)

 end

 end

end

When you run the test, you see that the framework does not execute any of the methods
in the TestMethodSetup or Test.

ts = matlab.unittest.TestSuite.fromClass(?ExampleTest);

res = ts.run;

Running ExampleTest

==

All tests in ExampleTest were filtered.

 Details

==

Done ExampleTest

Failure Summary:

 Dynamically Filtered Tests

31-127

 Name Failed Incomplete Reason(s)

 ==

 ExampleTest/testA X Filtered by assumption.

 --

 ExampleTest/testB X Filtered by assumption.

 --

 ExampleTest/testC X Filtered by assumption.

The Test and TestMethodSetup methods did not change but everything is filtered due
to an assumption failure in the TestClassSetup block.

See Also
matlab.unittest.qualifications.Assumable | TestCase | TestResult

31 Unit Testing

31-128

Create Custom Constraint

This example shows how to create a custom constraint that determines if a given value is
the same size as an expected value.

In a file in your working folder, create a HasSameSizeAs.m. The constructor
accepts a value to compare to the actual size. This value is stored within the
ValueWithExpectedSize property. Since, it is recommended that Constraint
implementations are immutable, set the property SetAccess=immutable.

classdef HasSameSizeAs < matlab.unittest.constraints.Constraint

 properties(SetAccess=immutable)

 ValueWithExpectedSize

 end

 methods

 function constraint = HasSameSizeAs(value)

 constraint.ValueWithExpectedSize = value;

 end

 end

end

Classes that derive from Constraint must implement the satisfiedBy method. This
method must contain the comparison logic and return a boolean value.

Include the satisfiedBy method in the methods block in HasSameSizeAs.m.

 function bool = satisfiedBy(constraint, actual)

 bool = isequal(size(actual), size(constraint.ValueWithExpectedSize));

 end

If the actual size and expected size are equal, this method returns true.

Classes deriving from Constraint must implement the getDiagnosticFor
method. This method must evaluate the actual value against the constraint and
provide a Diagnostic object. In this example, getDiagnosticFor returns a
StringDiagnostic. Include the getDiagnosticFor method in the methods block in
HasSameSizeAs.m.

 function diag = getDiagnosticFor(constraint, actual)

 import matlab.unittest.diagnostics.StringDiagnostic

 Create Custom Constraint

31-129

 if constraint.satisfiedBy(actual)

 diag = StringDiagnostic('HasSameSizeAs passed.');

 else

 diag = StringDiagnostic(sprintf(...

 'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSize: [%s]',...

 int2str(size(actual)),...

 int2str(size(constraint.ValueWithExpectedSize))));

 end

 end

HasSameSizeAs Class Definition Summary

classdef HasSameSizeAs < matlab.unittest.constraints.Constraint

 properties(SetAccess=immutable)

 ValueWithExpectedSize

 end

 methods

 function constraint = HasSameSizeAs(value)

 constraint.ValueWithExpectedSize = value;

 end

 function bool = satisfiedBy(constraint, actual)

 bool = isequal(size(actual), size(constraint.ValueWithExpectedSize));

 end

 function diag = getDiagnosticFor(constraint, actual)

 import matlab.unittest.diagnostics.StringDiagnostic

 if constraint.satisfiedBy(actual)

 diag = StringDiagnostic('HasSameSizeAs passed.');

 else

 diag = StringDiagnostic(sprintf(...

 'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSize: [%s]',...

 int2str(size(actual)),...

 int2str(size(constraint.ValueWithExpectedSize))));

 end

 end

 end

end

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase

testCase = TestCase.forInteractiveUse;

Test a passing case.

testCase.verifyThat(zeros(5), HasSameSizeAs(repmat(1,5)))

Interactive verification passed.

Test a failing case.

31 Unit Testing

31-130

testCase.verifyThat(zeros(5), HasSameSizeAs(ones(1,5)))

Interactive verification failed.

Framework Diagnostic:

HasSameSizeAs failed.

Actual Size: [5 5]

ExpectedSize: [1 5]

See Also
matlab.unittest.constraints.Constraint

Related Examples
• “Create Custom Boolean Constraint” on page 31-131

 Create Custom Boolean Constraint

31-131

Create Custom Boolean Constraint

This example shows how to create a custom boolean constraint that determines if a given
value is the same size as an expected value.

In a file in your working folder, create a file HasSameSizeAs.m. The constructor
accepts a value to compare to the actual size. This value is stored within the
ValueWithExpectedSize property. It is recommended that BooleanConstraint
implementations be immutable, so set the property SetAccess=immutable.
classdef HasSameSizeAs < matlab.unittest.constraints.BooleanConstraint

 properties(SetAccess=immutable)

 ValueWithExpectedSize

 end

 methods

 function constraint = HasSameSizeAs(value)

 constraint.ValueWithExpectedSize = value;

 end

 end

end

Include these methods in the methods block in HasSameSizeAs.m. Since the
BooleanConstraint class is a subclass of Constraint, classes that derive from it must
implement the satisfiedBy and getDiagnosticFor methods. For more information
about these methods, see matlab.unittest.constraints.Constraint.
 methods

 function bool = satisfiedBy(constraint, actual)

 bool = isequal(size(actual), size(constraint.ValueWithExpectedSize));

 end

 function diag = getDiagnosticFor(constraint, actual)

 import matlab.unittest.diagnostics.StringDiagnostic

 if constraint.satisfiedBy(actual)

 diag = StringDiagnostic('HasSameSizeAs passed.');

 else

 diag = StringDiagnostic(sprintf(...

 'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSize: [%s]',...

 int2str(size(actual)),...

 int2str(size(constraint.ValueWithExpectedSize))));

 end

 end

 end

Include the getNegativeDiagnosticFor method in the methods block with protected
access in HasSameSizeAs.m. Classes that derive from BooleanConstraint must
implement the getNegativeDiagnosticFor method. This method must provide a
Diagnostic object that is expressed in the negative sense of the constraint.
 methods(Access=protected)

 function diag = getNegativeDiagnosticFor(constraint, actual)

31 Unit Testing

31-132

 import matlab.unittest.diagnostics.StringDiagnostic

 if constraint.satisfiedBy(actual)

 diag = StringDiagnostic(sprintf(...

 ['Negated HasSameSizeAs failed.\nSize [%s] of ' ...

 'Actual Value and Expected Value were the same ' ...

 'but should not have been.'], int2str(size(actual))));

 else

 diag = StringDiagnostic('Negated HasSameSizeAs passed.');

 end

 end

 end

In exchange for implementing the required methods, the constraint inherits
the appropriate and, or, and not overloads so it can be combined with other
BooleanConstraint objects or negated.

HasSameSizeAs Class Definition Summary

classdef HasSameSizeAs < matlab.unittest.constraints.BooleanConstraint

 properties(SetAccess=immutable)

 ValueWithExpectedSize

 end

 methods

 function constraint = HasSameSizeAs(value)

 constraint.ValueWithExpectedSize = value;

 end

 function bool = satisfiedBy(constraint, actual)

 bool = isequal(size(actual), size(constraint.ValueWithExpectedSize));

 end

 function diag = getDiagnosticFor(constraint, actual)

 import matlab.unittest.diagnostics.StringDiagnostic

 if constraint.satisfiedBy(actual)

 diag = StringDiagnostic('HasSameSizeAs passed.');

 else

 diag = StringDiagnostic(sprintf(...

 'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSize: [%s]',...

 int2str(size(actual)), ...

 int2str(size(constraint.ValueWithExpectedSize))));

 end

 end

 end

 methods(Access=protected)

 function diag = getNegativeDiagnosticFor(constraint, actual)

 import matlab.unittest.diagnostics.StringDiagnostic

 if constraint.satisfiedBy(actual)

 diag = StringDiagnostic(sprintf(...

 ['Negated HasSameSizeAs failed.\nSize [%s] of ' ...

 'Actual Value and Expected Value were the same ' ...

 'but should not have been.'], int2str(size(actual))));

 else

 diag = StringDiagnostic('Negated HasSameSizeAs passed.');

 end

 end

 end

end

At the command prompt, create a test case for interactive testing.

 Create Custom Boolean Constraint

31-133

import matlab.unittest.TestCase

import matlab.unittest.constraints.HasLength

testCase = TestCase.forInteractiveUse;

Test a passing case.

testCase.verifyThat(zeros(5), HasLength(5) | ~HasSameSizeAs(repmat(1,5)))

Interactive verification passed.

The test passes because one of the or conditions, HasLength(5), is true.

Test a failing case.

testCase.verifyThat(zeros(5), HasLength(5) & ~HasSameSizeAs(repmat(1,5)))

Interactive verification failed.

Framework Diagnostic:

AndConstraint failed.

--> + [First Condition]:

 | HasLength passed.

--> AND

 + [Second Condition]:

 | Negated HasSameSizeAs failed.

 | Size [5 5] of Actual Value and Expected Value were the same but should not have been.

 -+---------------------

The test fails because one of the and conditions, ~HasSameSizeAs(repmat(1,5)), is
false.

See Also
matlab.unittest.constraints.BooleanConstraint

Related Examples
• “Create Custom Constraint” on page 31-128

31 Unit Testing

31-134

Create Custom Tolerance

This example shows how to create a custom tolerance to determine if two DNA sequences
have a Hamming distance within a specified tolerance. For two DNA sequences of the
same length, the Hamming distance is the number of positions in which the nucleotides
(letters) of one sequence differ from the other.

In a file, DNA.m, in your working folder, create a simple class for a DNA sequence.

classdef DNA

 properties(SetAccess=immutable)

 Sequence

 end

 methods

 function dna = DNA(sequence)

 validLetters = ...

 sequence == 'A' | ...

 sequence == 'C' | ...

 sequence == 'T' | ...

 sequence == 'G';

 if ~all(validLetters(:))

 error('Sequence contained a letter not found in DNA.')

 end

 dna.Sequence = sequence;

 end

 end

end

In a file in your working folder, create a tolerance class so that you can test that DNA
sequences are within a specified Hamming distance. The constructor requires a Value
property that defines the maximum Hamming distance.

classdef HammingDistance < matlab.unittest.constraints.Tolerance

 properties

 Value

 end

 methods

 function tolerance = HammingDistance(value)

 tolerance.Value = value;

 end

 Create Custom Tolerance

31-135

 end

end

In a methods block with the HammingDistance class definition, include the following
method so that the tolerance supports DNA objects. Tolerance classes must implement a
supports method.

 methods

 function tf = supports(~, value)

 tf = isa(value, 'DNA');

 end

 end

In a methods block with the HammingDistance class definition, include the following
method that returns true or false. Tolerance classes must implement a satisfiedBy
method. The testing framework uses this method to determine if two values are within
the tolerance.

 methods

 function tf = satisfiedBy(tolerance, actual, expected)

 if ~isSameSize(actual.Sequence, expected.Sequence)

 tf = false;

 return

 end

 tf = hammingDistance(actual.Sequence,expected.Sequence) <= tolerance.Value;

 end

 end

In the HammingDistance.m file, define the following helper functions outside of the
classdef block. The isSameSize function returns true if two DNA sequences are the
same size, and the hammingDistance function returns the Hamming distance between
two sequences.

function tf = isSameSize(str1, str2)

tf = isequal(size(str1), size(str2));

end

function distance = hammingDistance(str1, str2)

distance = nnz(str1 ~= str2);

end

The function returns a Diagnostic object with information about the comparison. In
a methods block with the HammingDistance class definition, include the following

31 Unit Testing

31-136

method that returns a StringDiagnostic. Tolerance classes must implement a
getDiagosticFor method.

 methods

 function diag = getDiagnosticFor(tolerance, actual, expected)

 import matlab.unittest.diagnostics.StringDiagnostic

 if ~isSameSize(actual.Sequence, expected.Sequence)

 str = 'The DNA sequences must be the same length.';

 else

 str = sprintf('%s%d.\n%s%d.', ...

 'The DNA sequences have a Hamming distance of ', ...

 hammingDistance(actual.Sequence, expected.Sequence), ...

 'The allowable distance is ', ...

 tolerance.Value);

 end

 diag = StringDiagnostic(str);

 end

 end

HammingDistance Class Definition Summary

classdef HammingDistance < matlab.unittest.constraints.Tolerance

 properties

 Value

 end

 methods

 function tolerance = HammingDistance(value)

 tolerance.Value = value;

 end

 function tf = supports(~, value)

 tf = isa(value, 'DNA');

 end

 function tf = satisfiedBy(tolerance, actual, expected)

 if ~isSameSize(actual.Sequence, expected.Sequence)

 tf = false;

 return

 end

 tf = hammingDistance(actual.Sequence,expected.Sequence) <= tolerance.Value;

 end

 function diag = getDiagnosticFor(tolerance, actual, expected)

 Create Custom Tolerance

31-137

 import matlab.unittest.diagnostics.StringDiagnostic

 if ~isSameSize(actual.Sequence, expected.Sequence)

 str = 'The DNA sequences must be the same length.';

 else

 str = sprintf('%s%d.\n%s%d.', ...

 'The DNA sequences have a Hamming distance of ', ...

 hammingDistance(actual.Sequence, expected.Sequence), ...

 'The allowable distance is ', ...

 tolerance.Value);

 end

 diag = StringDiagnostic(str);

 end

 end

end

function tf = isSameSize(str1, str2)

tf = isequal(size(str1), size(str2));

end

function distance = hammingDistance(str1, str2)

distance = nnz(str1 ~= str2);

end

At the command prompt, create a TestCase for interactive testing.

import matlab.unittest.TestCase

import matlab.unittest.constraints.IsEqualTo

testCase = TestCase.forInteractiveUse;

Create two DNA objects.

sampleA = DNA('ACCTGAGTA');

sampleB = DNA('ACCACAGTA');

Verify that the DNA sequences are equal to each other.

testCase.verifyThat(sampleA, IsEqualTo(sampleB))

Interactive verification failed.

Framework Diagnostic:

31 Unit Testing

31-138

IsEqualTo failed.

--> ObjectComparator failed.

 --> The objects are not equal using "isequal".

Actual Object:

 DNA with properties:

 Sequence: 'ACCTGAGTA'

Expected Object:

 DNA with properties:

 Sequence: 'ACCACAGTA'

Verify that the DNA sequences are equal to each other within a Hamming distance of 1.

testCase.verifyThat(sampleA, IsEqualTo(sampleB,...

 'Within', HammingDistance(1)))

Interactive verification failed.

Framework Diagnostic:

IsEqualTo failed.

--> ObjectComparator failed.

 --> The objects are not equal using "isequal".

 --> The DNA sequences have a Hamming distance of 2.

 The allowable distance is 1.

Actual Object:

 DNA with properties:

 Sequence: 'ACCTGAGTA'

Expected Object:

 DNA with properties:

 Sequence: 'ACCACAGTA'

The sequences are not equal to each other within a tolerance of 1. The testing framework
displays additional diagnostics from the getDiagnosticFor method.

Verify that the DNA sequences are equal to each other within a Hamming distance of 2.

testCase.verifyThat(sampleA, IsEqualTo(sampleB,...

 'Within', HammingDistance(2)))

 Create Custom Tolerance

31-139

Interactive verification passed.

See Also
matlab.unittest.constraints.Tolerance

31 Unit Testing

31-140

Overview of Performance Testing Framework

In this section...

“Determine Bounds of Measured Code” on page 31-140
“Types of Time Experiments” on page 31-141
“Write Performance Tests with Measurement Boundaries” on page 31-142
“Run Performance Tests” on page 31-142
“Understand Invalid Test Results” on page 31-143

The performance test interface leverages the script, function, and class-based unit testing
interfaces. You can perform qualifications within your performance tests to ensure
correct functional behavior while measuring code performance. Also, you can run your
performance tests as standard regression tests to ensure that code changes do not break
performance tests.

Determine Bounds of Measured Code

This table indicates what code is measured for the different types of tests.

Type of Test What Is Measured What Is Excluded

Script-based Code in each section of the
script

• Code in the shared
variables section

• Measured estimate of the
framework overhead

Function-based Code in each test function • Code in the following
functions: setup,
setupOnce, teardown,
and teardownOnce

• Measured estimate of the
framework overhead

Class-based Code in each method tagged
with the Test attribute

• Code in the methods with
the following attributes:
TestMethodSetup,
TestMethodTeardown,
TestClassSetup, and
TestClassTeardown

 Overview of Performance Testing Framework

31-141

Type of Test What Is Measured What Is Excluded

• Shared fixture setup and
teardown

• Measured estimate of the
framework overhead

Class-based deriving from
matlab.perftest.TestCase

and using
startMeasuring and
stopMeasuring methods

Code between calls to
startMeasuring and
stopMeasuring in each
method tagged with the
Test attribute

• Code outside of the
startMeasuring/stopMeasuring
boundary

• Measured estimate of the
framework overhead

Types of Time Experiments

You can create two types of time experiments.

• A frequentist time experiment collects a variable number of measurements to achieve
a specified margin of error and confidence level. Use a frequentist time experiment to
define statistical objectives for your measurement samples. Generate this experiment
using the runperf function or the limitingSamplingError static method of the
TimeExperiment class.

• A fixed time experiment collects a fixed number of measurements. Use a fixed time
experiment to measure first-time costs of your code or to take explicit control of your
sample size. Generate this experiment using the withFixedSampleSize static
method of the TimeExperiment class.

This table summarizes the differences between the frequentist and fixed time
experiments.

 Frequentist time experiment Fixed time experiment

Warm-up measurements 4 by default, but
configurable through
TimeExperiment.limitingSamplingError

0 by default, but
configurable through
TimeExperiment.withFixedSampleSize

Number of samples Between 4 and
32 by default, but
configurable through
TimeExperiment.limitingSamplingError

Defined during experiment
construction

31 Unit Testing

31-142

 Frequentist time experiment Fixed time experiment

Relative margin of error 5% by default, but
configurable through
TimeExperiment.limitingSamplingError

Not applicable

Confidence level 95% by default, but
configurable through
TimeExperiment.limitingSamplingError

Not applicable

Framework behavior for
invalid test result

Stops measuring a test and
moves to the next one

Collects specified number of
samples

Write Performance Tests with Measurement Boundaries

If your class-based tests derive from matlab.perftest.TestCase instead of
matlab.unittest.TestCase, then you can use the startMeasuring and
stopMeasuring methods to define boundaries for performance test measurements.
You can use these boundaries only once within each method that contains the Test
attribute. If you use these methods, the call to startMeasuring must precede the call to
stopMeasuring. If you use these methods incorrectly in a Test method and run the test
as a TimeExperiment, then the frameworks marks the measurement as invalid. Also,
you still can run these performance tests as unit tests. For more information, see “Test
Performance Using Classes” on page 31-149.

Run Performance Tests

There are two ways to run performance tests:

• Use the runperf function to run the tests. This function uses a variable number of
measurements to reach a sample mean with a 0.05 relative margin of error within a
0.95 confidence level. It runs the tests four times to warm up the code and between 4
and 32 times to collect measurements that meet the statistical objectives.

• Generate an explicit test suite using the testsuite function or the methods in the
TestSuite class, and then create and run a time experiment.

• Use the withFixedSampleSize method of the TimeExperiment class to
construct a time experiment with a fixed number of measurements. You can
specify a fixed number of warm-up measurements and a fixed number of samples.

• Use the limitingSamplingError method of the TimeExperiment class to
construct a time experiment with specified statistical objectives, such as margin

 Overview of Performance Testing Framework

31-143

of error and confidence level. Also, you can specify the number of warm-up
measurements and the miminum and maximum number of samples.

You can run your performance tests as regression tests. For more information, see “Run
Tests for Various Workflows” on page 31-87.

Understand Invalid Test Results

In some situations, the MeasurementResult for a test result is marked invalid. A
test result is marked invalid when the performance testing framework sets the Valid
property of the MeasurementResult to false. This invalidation occurs if your test fails or
is filtered. Also, if your test incorrectly uses the startMeasuring and stopMeasuring
methods of matlab.perftest.TestCase, then the MeasurementResult for that test
is marked invalid.

When the performance testing framework encounters an invalid test result, it behaves
differently depending on the type of time experiment:

• If you create a frequentist time experiment, then the framework stops measuring for
that test and moves to the next test.

• If you create a fixed time experiment, then the framework continues collecting the
specified number of samples.

See Also
matlab.perftest.TimeExperiment | matlab.unittest.measurement.MeasurementResult |
runperf | testsuite

Related Examples
• “Test Performance Using Scripts or Functions” on page 31-144
• “Test Performance Using Classes” on page 31-149

31 Unit Testing

31-144

Test Performance Using Scripts or Functions

This example shows how to create a script or function-based performance test that times
the preallocation of a vector using four different approaches.

Write Performance Test

Create a performance test in a file, preallocationTest.m, in your current working
folder. In this example, you can choose to use either the following script-based test or the
function-based test. The output in this example is for the function-based test. If you use
the script-based test, then your test names will be different.

Script-Based Performance Test Function-Based Performance Test

vectorSize = 1e7;

%% Ones Function

x = ones(1,vectorSize);

%% Indexing With Variable

id = 1:vectorSize;

x(id) = 1;

%% Indexing On LHS

x(1:vectorSize) = 1;

%% For Loop

for i=1:vectorSize

 x(i) = 1;

end

function tests = preallocationTest

tests = functiontests(localfunctions);

end

function testOnes(testCase)

vectorSize = getSize();

x = ones(1,vectorSize());

end

function testIndexingWithVariable(testCase)

vectorSize = getSize();

id = 1:vectorSize;

x(id) = 1;

end

function testIndexingOnLHS(testCase)

vectorSize = getSize();

x(1:vectorSize) = 1;

end

function testForLoop(testCase)

vectorSize = getSize();

for i=1:vectorSize

 x(i) = 1;

end

end

function vectorSize = getSize()

vectorSize = 1e7;

 Test Performance Using Scripts or Functions

31-145

Script-Based Performance Test Function-Based Performance Test
end

Run Performance Test

Run the performance test. Depending on your system, the warnings you see
might vary. In this example output, the performance testing framework ran the
preallocationTest/testOnes test the maximum number of times, but it did not
achieve a 0.05 relative margin of error with a 0.95 confidence level.

results = runperf('preallocationTest.m')

Running preallocationTest

..........

..........

..........

......Warning: The target Relative Margin of Error was not met after running the MaxSamples for preallocationTest/testOnes.

....

..........

..........

..........

..........

.....

Done preallocationTest

results =

 1x4 MeasurementResult array with properties:

 Name

 Valid

 Samples

 TestActivity

Totals:

 4 Valid, 0 Invalid.

The results variable is a 1x4 MeasurementResult array. Each element in the array
corresponds to one of the tests defined in the code section in preallocationTest.m.

Display Test Results

Display the measurement results for the second test. Your results might vary.

31 Unit Testing

31-146

results(2)

ans =

 MeasurementResult with properties:

 Name: 'preallocationTest/testIndexingWithVariable'

 Valid: 1

 Samples: [17x7 table]

 TestActivity: [21x12 table]

Totals:

 1 Valid, 0 Invalid.

As indicated by the size of the TestActivity property, the performance testing
framework collected 21 measurements. This number of measurements includes
four measurements to warm up the code. The Samples property excludes warm-up
measurements.

Display the sample measurements for the second test.

results(2).Samples

ans =

 Name MeasuredTime Timestamp Host Platform Version RunIdentifier

 __ ____________ ____________________ ___________ ________ _____________________ ____________________________________

 preallocationTest/testIndexingWithVariable 0.12496 31-Dec-2015 06:29:38 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.16411 31-Dec-2015 06:29:39 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.13467 31-Dec-2015 06:29:39 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.14919 31-Dec-2015 06:29:39 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.13663 31-Dec-2015 06:29:39 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.12597 31-Dec-2015 06:29:39 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.13036 31-Dec-2015 06:29:39 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.17423 31-Dec-2015 06:29:40 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.13087 31-Dec-2015 06:29:40 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.13951 31-Dec-2015 06:29:40 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.12493 31-Dec-2015 06:29:40 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.12613 31-Dec-2015 06:29:40 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.15276 31-Dec-2015 06:29:40 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.16414 31-Dec-2015 06:29:41 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.13791 31-Dec-2015 06:29:41 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.12533 31-Dec-2015 06:29:41 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 preallocationTest/testIndexingWithVariable 0.12339 31-Dec-2015 06:29:41 MY-HOSTNAME win64 9.0.0.320924 (R2016a) e0f6e9a4-c41d-409b-a480-93fc30d88551

 Test Performance Using Scripts or Functions

31-147

Compute Statistics for Single Test Element

Display the mean measured time for the second test. To exclude data collected in the
warm-up runs, use the values in the Samples field.

sampleTimes = results(2).Samples.MeasuredTime;

meanTest2 = mean(sampleTimes)

meanTest2 =

 0.1391

The performance testing framework collected 17 sample measurements for the second
test. The test took an average of 0.1391 second.

Compute Statistics for All Test Elements

Determine the average time for all the test elements. The preallocationTest test
includes four different methods for allocating a vector of ones. Compare the time for each
method (test element).

Since the performance testing framework returns a Samples table for each test element,
concatenate all these tables into one table. Then group the rows by test element Name,
and compute the mean MeasuredTime for each group.

fullTable = vertcat(results.Samples);

summaryStats = varfun(@mean,fullTable,...

 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStats =

 Name GroupCount mean_MeasuredTime

 __ __________ _________________

 preallocationTest/testOnes 32 0.031445

 preallocationTest/testIndexingWithVariable 17 0.13912

 preallocationTest/testIndexingOnLHS 23 0.071286

 preallocationTest/testForLoop 4 0.80677

Recall that the performance testing framework issued a warning stating that the
measurements for the preallocationTest/testOnes test did not meet the
statistical objectives. The testing framework collected the maximum number of samples,
which is 32, and then it stopped the test. By contrast, the measurements for the
preallocationTest/testForLoop test met statistical objectives in the minimum
number of samples, which is four.

31 Unit Testing

31-148

Change Statistical Objectives and Rerun Tests

Change the statistical objectives defined by the runperf function by constructing and
running a time experiment. Construct a time experiment with measurements that reach
a sample mean with an 8% relative margin of error within a 97% confidence level.

Construct an explicit test suite.

suite = testsuite('preallocationTest');

Construct a time experiment with a variable number of sample measurements, and run
the tests.

import matlab.perftest.TimeExperiment

experiment = TimeExperiment.limitingSamplingError('NumWarmups',2,...

 'RelativeMarginOfError',0.08, 'ConfidenceLevel', 0.97);

resultsTE = run(experiment,suite);

Running preallocationTest

..........

..........

.......

Done preallocationTest

Compute the statistics for all the test elements.

fullTableTE = vertcat(resultsTE.Samples);

summaryStatsTE = varfun(@mean,fullTableTE,...

 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStatsTE =

 Name GroupCount mean_MeasuredTime

 __ __________ _________________

 preallocationTest/testOnes 4 0.025568

 preallocationTest/testIndexingWithVariable 6 0.12898

 preallocationTest/testIndexingOnLHS 5 0.066603

 preallocationTest/testForLoop 4 0.78484

See Also
matlab.perftest.TimeExperiment | matlab.unittest.measurement.MeasurementResult |
runperf | testsuite

 Test Performance Using Classes

31-149

Test Performance Using Classes

This example shows how to create a performance test and regression test for the
fprintf function.

Write Performance Test

Consider the following unit (regression) test. You can run this test as a performance test
using runperf('fprintfTest') instead of runtests('fprintfTest').

classdef fprintfTest < matlab.unittest.TestCase

 properties

 file

 fid

 end

 methods(TestMethodSetup)

 function openFile(testCase)

 testCase.file = tempname;

 testCase.fid = fopen(testCase.file,'w');

 testCase.assertNotEqual(testCase.fid,-1,'IO Problem')

 testCase.addTeardown(@delete,testCase.file);

 testCase.addTeardown(@fclose,testCase.fid);

 end

 end

 methods(Test)

 function testPrintingToFile(testCase)

 textToWrite = repmat('abcdef',1,5000000);

 fprintf(testCase.fid,'%s',textToWrite);

 testCase.verifyEqual(fileread(testCase.file),textToWrite)

 end

 function testBytesToFile(testCase)

 textToWrite = repmat('tests_',1,5000000);

 nbytes = fprintf(testCase.fid,'%s',textToWrite);

 testCase.verifyEqual(nbytes,length(textToWrite))

 end

 end

end

The measured time does not include the time to open and close the file or the assertion
because these activities take place inside a TestMethodSetup block, and not inside a

31 Unit Testing

31-150

Test block. However, the measured time includes the time to perform the verifications.
Best practice is to measure a more accurate performance boundary.

Create a performance test in a file, fprintfTest.m, in your current working folder. This
test is similar to the regression test with the following modifications:

• The test inherits from matlab.perftest.TestCase instead of
matlab.unittest.TestCase.

• The test calls the startMeasuring and stopMeasuring methods to create a
boundary around the fprintf function call.

classdef fprintfTest < matlab.perftest.TestCase

 properties

 file

 fid

 end

 methods(TestMethodSetup)

 function openFile(testCase)

 testCase.file = tempname;

 testCase.fid = fopen(testCase.file,'w');

 testCase.assertNotEqual(testCase.fid,-1,'IO Problem')

 testCase.addTeardown(@delete,testCase.file);

 testCase.addTeardown(@fclose,testCase.fid);

 end

 end

 methods(Test)

 function testPrintingToFile(testCase)

 textToWrite = repmat('abcdef',1,5000000);

 testCase.startMeasuring();

 fprintf(testCase.fid,'%s',textToWrite);

 testCase.stopMeasuring();

 testCase.verifyEqual(fileread(testCase.file),textToWrite)

 end

 function testBytesToFile(testCase)

 textToWrite = repmat('tests_',1,5000000);

 testCase.startMeasuring();

 nbytes = fprintf(testCase.fid,'%s',textToWrite);

 testCase.stopMeasuring();

 Test Performance Using Classes

31-151

 testCase.verifyEqual(nbytes,length(textToWrite))

 end

 end

end

The measured time for this performance test includes only the call to fprintf, and the
testing framework still evaluates the qualifications.

Run Performance Test

Run the performance test. Depending on your system, you might see warnings that the
performance testing framework ran the test the maximum number of times, but did not
achieve a 0.05 relative margin of error with a 0.95 confidence level.

results = runperf('fprintfTest');

Running fprintfTest

..........

..........

..........

..........

.....

Done fprintfTest

results =

 1x2 MeasurementResult array with properties:

 Name

 Valid

 Samples

 TestActivity

Totals:

 2 Valid, 0 Invalid.

The results variable is a 1x2 MeasurementResult array. Each element in the array
corresponds to one of the tests defined in the test file.

Display Test Results

Display the measurement results for the first test. Your results might vary.

31 Unit Testing

31-152

results(1)

ans =

 MeasurementResult with properties:

 Name: 'fprintfTest/testPrintingToFile'

 Valid: 1

 Samples: [10x7 table]

 TestActivity: [14x12 table]

Totals:

 1 Valid, 0 Invalid.

As indicated by the size of the TestActivity property, the performance testing
framework collected 14 measurements. This number includes 4 measurements to warm
up the code. The Samples property excludes warm-up measurements.

Display the sample measurements for the first test.

results(1).Samples

ans =

 Name MeasuredTime Timestamp Host Platform Version RunIdentifier

 ______________________________ ____________ ____________________ ___________ ________ _____________________ ____________________________________

 fprintfTest/testPrintingToFile 0.067772 02-Jan-2016 18:24:52 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.085359 02-Jan-2016 18:24:53 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.075863 02-Jan-2016 18:24:53 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.068161 02-Jan-2016 18:24:53 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.067606 02-Jan-2016 18:24:53 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.073692 02-Jan-2016 18:24:54 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.070815 02-Jan-2016 18:24:54 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.067791 02-Jan-2016 18:24:54 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.077599 02-Jan-2016 18:24:54 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

 fprintfTest/testPrintingToFile 0.07438 02-Jan-2016 18:24:55 MY-HOSTNAME win64 9.0.0.320924 (R2016a) 9b6a0d5c-5fe7-4d26-8479-222792127ebc

Compute Statistics for Single Test Element

Display the mean measured time for the first test. To exclude data collected in the warm-
up runs, use the values in the Samples field.

sampleTimes = results(1).Samples.MeasuredTime;

meanTest = mean(sampleTimes)

 Test Performance Using Classes

31-153

meanTest =

 0.0729

Compute Statistics for All Test Elements

Determine the average time for all the test elements. The fprintfTest test includes
two different methods. Compare the time for each method (test element).

Since the performance testing framework returns a Samples table for each test element,
concatenate all these tables into one table. Then group the rows by test element Name,
and compute the mean MeasuredTime for each group.

fullTable = vertcat(results.Samples);

summaryStats = varfun(@mean,fullTable,...

 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStats =

 Name GroupCount mean_MeasuredTime

 ______________________________ __________ _________________

 fprintfTest/testPrintingToFile 10 0.072904

 fprintfTest/testBytesToFile 27 0.079338

Both test methods write the same amount of data to a file. Therefore, some of the
difference between the mean values is attributed to calling the fprintf function with an
output argument.

Change Statistical Objectives and Rerun Tests

Change the statistical objectives defined by the runperf function by constructing and
running a time experiment. Construct a time experiment with measurements that reach
a sample mean with a 3% relative margin of error within a 97% confidence level. Collect
eight warm-up measurements.

Construct an explicit test suite.

suite = testsuite('fprintfTest');

Construct a time experiment with a variable number of sample measurements, and run
the tests.

import matlab.perftest.TimeExperiment

31 Unit Testing

31-154

experiment = TimeExperiment.limitingSamplingError('NumWarmups',8,...

 'RelativeMarginOfError',0.03, 'ConfidenceLevel', 0.97);

resultsTE = run(experiment,suite);

Running fprintfTest

..........

..........

..........

..........Warning: The target Relative Margin of Error was not met after running the MaxSamples for

fprintfTest/testPrintingToFile.

..........

..........

..........

..........Warning: The target Relative Margin of Error was not met after running the MaxSamples for

fprintfTest/testBytesToFile.

Done fprintfTest

In this example output, the performance testing framework is not able to meet the
stricter statistical objectives with the default number of maximum samples. Your results
might vary.

Compute the statistics for all the test elements.

fullTableTE = vertcat(resultsTE.Samples);

summaryStatsTE = varfun(@mean,fullTableTE,...

 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStatsTE =

 Name GroupCount mean_MeasuredTime

 ______________________________ __________ _________________

 fprintfTest/testPrintingToFile 32 0.081782

 fprintfTest/testBytesToFile 32 0.076378

Increase the maximum number of samples to 100 and rerun the time experiment.

experiment = TimeExperiment.limitingSamplingError('NumWarmups',2,...

 'RelativeMarginOfError',0.03,'ConfidenceLevel',0.97,'MaxSamples',100);

resultsTE = run(experiment,suite);

Running fprintfTest

 Test Performance Using Classes

31-155

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..

Done fprintfTest

Compute the statistics for all the test elements.

fullTableTE = vertcat(resultsTE.Samples);

summaryStatsTE = varfun(@mean,fullTableTE,...

 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStatsTE =

 Name GroupCount mean_MeasuredTime

 ______________________________ __________ _________________

 fprintfTest/testPrintingToFile 55 0.07783

 fprintfTest/testBytesToFile 53 0.079008

The testing framework achieves the statistical objectives for both tests in approximately
50 samples.

Measure First-time Cost

Start a new MATLAB session. A new session ensures that MATLAB has not run the code
contained in your tests.

Measure the first-time cost of your code by creating and running a fixed time experiment
with zero warm-up measurements and one sample measurement.

Construct an explicit test suite. Since you are measuring the first-time cost of the
function, run a single test. To run multiple tests, save the results and start a new
MATLAB session between tests.

suite = testsuite('fprintfTest/testPrintingToFile');

31 Unit Testing

31-156

Construct and run the time experiment.

import matlab.perftest.TimeExperiment

experiment = TimeExperiment.withFixedSampleSize(1);

results = run(experiment,suite);

Running fprintfTest

.

Done fprintfTest

Display the results. Observe the TestActivity table to ensure there are no warm-up
samples.

fullTable = results.TestActivity

fullTable =

 Name Passed Failed Incomplete MeasuredTime Objective Timestamp Host Platform Version TestResult RunIdentifier

 ______________________________ ______ ______ __________ ____________ _________ ____________________ ___________ ________ _____________________ ________________________________ ____________________________________

 fprintfTest/testPrintingToFile true false false 0.065501 sample 06-Jan-2016 09:53:44 MY-HOSTNAME win64 9.0.0.323070 (R2016a) [1x1 matlab.unittest.TestResult] e0fe27aa-3224-46d1-a05a-542e9b8d9edb

The performance testing framework collects one sample is collected for each test.

See Also
matlab.perftest.TestCase | matlab.perftest.TimeExperiment |
matlab.unittest.measurement.MeasurementResult | runperf | testsuite

